Down to Earth: Everyday Uses for European Space Technology by P. Brisson & J. Rootes; European Space Agency/ESTEC, Noordwijk, 2001, 128pp

Space Policy ◽  
2001 ◽  
Vol 17 (4) ◽  
pp. 307 ◽  
2022 ◽  
Vol 14 (4) ◽  
pp. 58-66
Author(s):  
Aleksandr Kozyukov ◽  
N. Gamzatov ◽  
Sergey Grechanyy ◽  
Konstantin Zolnikov ◽  
I. Strukov ◽  
...  

The analysis of information on the stability of the electronic component base (ECB) in the development of radio-electronic equipment (REE) of spacecraft (spacecraft) is an important and urgent task. The paper considers the main components of the approaches of foreign organizations developing radio space technology to ensure its radiation resistance. The design approaches of Thales Alenia Space, Airbus Defense and Space, and the European Space Agency are presented. The article outlines the main directions for optimizing the procedures for the preliminary selection of ECB, which consist in ensuring the required resistance of REE SC at the ECB level with ensuring the reliability of data on durability, in minimizing the costs of applying resistance enhancement measures (through the use of a promising ECB with increased resistance characteristics), to replace ECB.


Author(s):  
Klaus Reichenberger ◽  
Jovan Matovic

MAGNA STEYR Space Technology was authorised by the European Space Agency (ESA) to develop to breadboard level a low mass micro engineered device able to change the heat rejection capability of a radiator and to protect it against external radiation variations. Previous works of MAGNA in the field of thermal control systems was the thermal design, manufacturing and verification of the ROSETTA thermal Louvres [5]. Thermal Louvres in satellite applications are used for thermal control to avoid overheating of the new generation satellites by exposed or shadowed radiator area. The closing and opening of the louvers wings is performed by thermal controlled actuators. The Louvres system is designed to be controlled by solar radiation. The challenge in the project was the design, manufacturing and verification of louvers with less mass but higher efficiency than current louvers.


Author(s):  
Marco Guglielmi ◽  
Matthew Bullock ◽  
Jean-Pierre Patureau

The European Space Agency (ESA) has established a Technology Observatory to actively monitor and benchmark the evolution of space technologies worldwide in support of its space technology strategy. One of the issues that has been recently analysed is the effect of restrictions placed by national governments worldwide on the export of space technologies. In this paper, the authors discuss the main findings of this survey. Import and export restrictions and indicative space related export and import flows are mapped and analysed. In addition, space-related cooperation agreements are reviewed. Positive and negative impacts of export and impact restrictions are identified and analysed. Major space faring countries have national legislations dealing with ‘sensitive’ technologies; however, the scope and type of legislations vary widely. Diverging trends have been identified for major exporting space industries. The European space sector has experienced a large increase while its American counterpart witnessed a net decrease; countries like China, India, Japan, and Russia are more active in export activities. U.S. export regulations have had the strongest impact on shaping the world export market. The widening of the export market strengthens the impact of export restrictions in Europe.


2015 ◽  
Vol 21 (3) ◽  
pp. 756-759
Author(s):  
Nicolae-Mihail Toncea ◽  
Andrei Stan ◽  
Octavian Cristea

Abstract Romania achieved full membership within ESA (European Space Agency) in 2011 and is actually involved in several European flagship space programmes. The “National Strategy for Space and Related Fields” is a strategic project funded through the Romanian Space Technology and Advanced Research Program (STAR), which is implemented by a consortium coordinated by IAROM S.A. One of the project goals is to identify national space- related technological capabilities and possible niches for Romania within the European space industry, as well as to identify cooperation opportunities within the mandatory and optional ESA programs. This paper presents an overview of the areas of expertise covered by projects contracted in 2012 and 2013 in the framework of the national space research and development programme. The paper does not cover industrial space contracts since they contain sensitive information.


Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2019 ◽  
Vol 9 (1) ◽  
pp. 111-126
Author(s):  
A. F. Purkhauser ◽  
J. A. Koch ◽  
R. Pail

Abstract The GRACE mission has demonstrated a tremendous potential for observing mass changes in the Earth system from space for climate research and the observation of climate change. Future mission should on the one hand extend the already existing time series and also provide higher spatial and temporal resolution that is required to fulfil all needs placed on a future mission. To analyse the applicability of such a Next Generation Gravity Mission (NGGM) concept regarding hydrological applications, two GRACE-FO-type pairs in Bender formation are analysed. The numerical closed loop simulations with a realistic noise assumption are based on the short arc approach and make use of the Wiese approach, enabling a self-de-aliasing of high-frequency atmospheric and oceanic signals, and a NRT approach for a short latency. Numerical simulations for future gravity mission concepts are based on geophysical models, representing the time-variable gravity field. First tests regarding the usability of the hydrology component contained in the Earth System Model (ESM) by the European Space Agency (ESA) for the analysis regarding a possible flood monitoring and detection showed a clear signal in a third of the analysed flood cases. Our analysis of selected cases found that detection of floods was clearly possible with the reconstructed AOHIS/HIS signal in 20% of the tested examples, while in 40% of the cases a peak was visible but not clearly recognisable.


1993 ◽  
Vol 137 ◽  
pp. 812-819
Author(s):  
T. Appourchaux ◽  
D. Gough ◽  
P. Hyoyng ◽  
C. Catala ◽  
S. Frandsen ◽  
...  

PRISMA (Probing Rotation and Interior of Stars: Microvariability and Activity) is a new space mission of the European Space Agency. PRISMA is currently in a Phase A study with 3 other competitors. PRISMA is the only ESA-only mission amongst those four and only one mission will be selected in Spring 1993 to become a real space mission.The goal of the Phase A study is to determine whether the payload of PRISMA can be accommodated on a second unit of the X-ray Multi-Mirror (XMM) bus; and whether the budget of the PRISMA mission can be kept below 265 MAU (’88 Economic conditions). The XMM mission is an approved cornerstone and is in a Phase A together with PRISMA.


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Valeria Mangano ◽  
Melinda Dósa ◽  
Markus Fränz ◽  
Anna Milillo ◽  
Joana S. Oliveira ◽  
...  

AbstractThe dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.


2018 ◽  
Vol 616 ◽  
pp. A2 ◽  
Author(s):  
L. Lindegren ◽  
J. Hernández ◽  
A. Bombrun ◽  
S. Klioner ◽  
U. Bastian ◽  
...  

Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task. Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.


Sign in / Sign up

Export Citation Format

Share Document