Nitrogenous components of human milk: non-protein nitrogen, true protein and free amino acids

2003 ◽  
Vol 81 (3) ◽  
pp. 357-362 ◽  
Author(s):  
Brunella Carratù ◽  
Concetta Boniglia ◽  
Francesco Scalise ◽  
Amalia Maria Ambruzzi ◽  
Elisabetta Sanzini
2003 ◽  
Vol 90 (1) ◽  
pp. 127-133 ◽  
Author(s):  
I. M. P. L. V. O. Ferreira

The composition of fourteen infant formulae and six follow-up milks with regard to their free amino acids (including taurine), free nucleotides, orotic acid, and free and total L-carnitine content was studied. The levels found were compared with the limits established in European legislation and with the composition of human and cows' milk samples. HPLC methodologies, optimized and validated for the matrices under study, were used, except for free and total L-carnitine contents that were quantified using a flow-injection manifold, also optimized and validated for the matrices under study. Global statistical treatment of the results by cluster analysis indicated similarities between the contents of the N compounds under study of infant formulae, follow-up milks and cows' milk and differences with regard to human milk composition. The principal component analysis showed that 60·2% of the variation in data was due to the first principal component, and the second component represented 23·8% of the total information. Nucleotide profiles, orotic acid, and free and total L-carnitine contents explain the main differences observed between human milk and the other milks studied (cows' milk, infant formulae and follow-up milks). Cows' milk is distinguished from infant formulae and follow-up milks mainly owing to the different uric acid contents and free amino acids profiles.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (3) ◽  
pp. 407-422 ◽  
Author(s):  
David K. Rassin ◽  
Gerald E. Gaull ◽  
Kirsti Heinonen ◽  
Niels C. R. Räihäa

The optimal quantity and quality of protein for low-birth-weight infants is undefined. In this study, 106 well, appropriate-for-gestational-age, low-birth-weight infants weighing 2,100 gm or less were divided into three gestational age groups and assigned randomly within each age group to one of five feeding regimens: pooled human milk; formula 1 (protein content, 1.5 gm/100 ml, 60 parts bovine whey proteins to 40 parts bovine caseins); formula 2 (3.0 gm/100 ml, 60:40); formula 3 (1.5 gm/100 ml, 18:82); and formula 4 (3.0 gm/100 ml, 18:82). The concentrations of the free amino acids in the plasma and urine of these infants were determined. The plasma concentrations of free amino acids were generally far greater in the infants fed the 3.0-gm/100 ml protein diets than they were in the infants fed pooled human milk. The plasma concentrations of free amino acids of the infants fed the 1.5-gm/100 ml protein diets were intermediate. In general, the concentrations of the free amino acids in the plasma of the infants fed the 3.0-gm/100 ml caseinpredominant formula (F4) were furthest from those fed pooled human milk. Glutamate showed the highest plasma amino acid concentrations in infants fed both the high- and low-protein casein-predominant formulas. This was true despite the fact that the intake of glutamate on the high-protein, whey-predominant formula was twice that on the low-protein, casein-predominant formula. The differences between groups in the essential amino acids in plasma were generally greater than those of the nonessential amino acids. The concentrations of amino acids in the urine tended to parallel those of the plasma.


1969 ◽  
Vol 50 (2) ◽  
pp. 319-326
Author(s):  
R. R. HARRIS

1. Non-protein and protein nitrogen fractions of the isopod Sphaeroma rugicauda were measured in animals adapted to 100 and 2% sea water. 2. The non-protein nitrogen component was reduced in animals acclimatized to the lower salinity. 3. Free amino acids accounted for 88 and 74% respectively of the non-protein nitrogen in the two salinities. 4. In 2% sea water taurine, proline, glycine, alanine and glutamic acid showed the greatest decreases in concentration compared to the levels measured in animals adapted to 100% sea water. 5. The decrease in total free amino acids of animals acclimatized to 100% sea water and transferred to 2% sea water was measured. 6. The total free amino acid concentration is reduced to the 2% sea water level within 12 hr. after transfer. 7. Free amino acid, haemolymph sodium and total body sodium levels after transfer to 2% sea water were compared. 8. The asymmetry between the fall in haemolymph sodium concentration and the decrease in total body sodium under these conditions is thought to be due to a water shift from the haemolymph into the tissues. 9. It is suggested that the osmotic pressure of the cells falls at a slower rate than that of the haemolymph.


2005 ◽  
Vol 40 (4) ◽  
pp. 496-500 ◽  
Author(s):  
Chih-Kuang Chuang ◽  
Shuan-Pei Lin ◽  
Hung-Chang Lee ◽  
Tuen-Jen Wang ◽  
Yu-Shu Shih ◽  
...  

1956 ◽  
Vol 39 (6) ◽  
pp. 853-868 ◽  
Author(s):  
G. R. Wyatt ◽  
T. C. Loughheed ◽  
S. S. Wyatt

1. Hemolymph was collected for analysis from the silkworm, Bombyx mori, in a series of developmental stages ranging from the second molt to the late pupa. The mean pH of larval hemolymph after collection was found to be 6.45, that of pupal hemolymph, 6.57; in vivo values may be slightly lower. Total dry solids ranged from 5.4 to 10.6 per cent. Total protein ranged from 1.2 to 5.3 per cent, increasing rapidly during the fifth instar. 2. Free amino acids were separated chromatographically and estimated. Of 19 amino acids identified, amounting collectively to 823 to 1497 mg. per 100 ml., glutamine, histidine, and lysine generally occurred in greatest amount. Tryptophan was not detected, and cystine (or cysteine) was found in only one sample. The total free amino acids account for 35 to 55 per cent of the non-protein nitrogen of the plasma. 3. Free sugars, estimated semiquantitatively on chromatograms, comprise glucose, fructose, and sucrose in total amount ranging from about 5 to 40 mg. per 100 ml. Total acid-soluble, ultrafiltrable carbohydrate, estimated as glucose by the anthrone reaction, ranged from 166 to 635 mg. per 100 ml., indicating the presence of low molecular weight sugar derivatives. 4. Inorganic phosphate amounted to 5 to 15 mg. per 100 ml., and acid-soluble organic phosphate to 100 to 200 mg. per 100 ml. The latter fraction includes several substances, of which one was tentatively identified as glucose-6-phosphate and the remainder are as yet unidentified. 5. Single samples of hemolymph were also taken from larvae of the wax moth, Galleria mellonella, and the spruce sawfly, Diprion hercyniae. These contained even higher concentrations of solutes than the silkworm samples, but with a generally similar distribution. The proportions of the free amino acids were different in each species.


1996 ◽  
Vol 2 (5) ◽  
pp. 335-339 ◽  
Author(s):  
F.C. Ibáñez ◽  
A.I. Ordóñez ◽  
M.S. Vicente ◽  
M.I. Torres ◽  
Y. Barcina

Idiazábal cheeses were made employing brining times of 12 h (batch A) and 36 h (batch B). Proteolytic changes in both batches were examined over 270 d of ripening; proteolysis was low in both batches, but lower in batch B than in batch A. Electrophoretic analysis revealed incom plete breakdown of αs and β-caseins at the end of the ripening period, particularly in batch B. The proportion of soluble nitrogen as a percentage of total nitrogen was 17.55% in batch B and 19.48% in batch A, while the proportion of non-protein nitrogen was 11.78% in batch B and 15.16% in batch A. The proportion of non-protein nitrogen as a percentage of soluble nitrogen was 67.17% in batch B and 77.88% in batch A. The free amino acids, the smallest non-protein nitrogen frac tion, attained values of 1203 mg/100 g of dry matter in batch B and 1902 mg/100 g of dry matter in batch A. After 60 d of ripening, the main free amino acids were glutamic acid, valine, leucine, lysine, and phenylalanine in both batches, although levels were higher in the batch with the shorter brining time. There was no clear trend in the non-protein-forming amino acids with either ripening time or brining time.


2016 ◽  
Vol 63 (3) ◽  
pp. 374-378 ◽  
Author(s):  
Anni Larnkjær ◽  
Signe Bruun ◽  
Dorthe Pedersen ◽  
Gitte Zachariassen ◽  
Vibeke Barkholt ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1828 ◽  
Author(s):  
Joris van Sadelhoff ◽  
Dimitra Mastorakou ◽  
Hugo Weenen ◽  
Bernd Stahl ◽  
Johan Garssen ◽  
...  

Free amino acids (FAAs) in human milk are indicated to have specific functional roles in infant development. Studies have shown differences between human milk that is expressed at the beginning of a feed (i.e., foremilk) and the remainder of the milk expressed (i.e., hindmilk). For example, it is well established that human hindmilk is richer in fat and energy than foremilk. Hence, exclusively feeding hindmilk is used to enhance weight gain of preterm, low birthweight infants. Whether FAAs occur differently between foremilk and hindmilk has never been reported, but given their bioactive capacities, this is relevant to consider especially in situations where hindmilk is fed exclusively. Therefore, this study analyzed and compared the FAA and total protein content in human foremilk and hindmilk samples donated by 30 healthy lactating women. The total protein content was found to be significantly higher in hindmilk (p < 0.001), whereas foremilk contained a significantly higher total content of FAAs (p = 0.015). With regards to individual FAAs, foremilk contained significantly higher levels of phenylalanine (p = 0.009), threonine (p = 0.003), valine (p = 0.018), alanine (p = 0.004), glutamine (p < 0.001), and serine (p = 0.012) than hindmilk. Although statistical significance was reached, effect size analysis of the milk fraction on FAA levels in milk revealed that the observed differences were only small. To what extent these differences are of physiological importance for infant development remains to be examined in future research.


2020 ◽  
Vol 11 ◽  
Author(s):  
Joris H. J. van Sadelhoff ◽  
Selma P. Wiertsema ◽  
Johan Garssen ◽  
Astrid Hogenkamp

Sign in / Sign up

Export Citation Format

Share Document