Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development

Gene ◽  
2003 ◽  
Vol 316 ◽  
pp. 1-21 ◽  
Author(s):  
Francine Messenguy ◽  
Evelyne Dubois
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Soumya Bhattacharjee ◽  
Kaushik Renganaath ◽  
Rajesh Mehrotra ◽  
Sandhya Mehrotra

The complexity and diversity of eukaryotic organisms are a feat of nature’s engineering. Pulling the strings of such an intricate machinery requires an even more masterful and crafty approach. Only the number and type of responses that they generate exceed the staggering proportions of environmental signals perceived and processed by eukaryotes. Hence, at first glance, the cell’s sparse stockpile of controlling factors does not seem remotely adequate to carry out this response. The question as to how eukaryotes sense and respond to environmental cues has no single answer. It is an amalgamation, an interplay between several processes, pathways, and factors—a combinatorial control. A short description of some of the most important elements that operate this entire conglomerate is given in this paper.


2009 ◽  
Vol 191 (11) ◽  
pp. 3504-3516 ◽  
Author(s):  
Ryan S. Mueller ◽  
Sinem Beyhan ◽  
Simran G. Saini ◽  
Fitnat H. Yildiz ◽  
Douglas H. Bartlett

ABSTRACT Indole has been proposed to act as an extracellular signal molecule influencing biofilm formation in a range of bacteria. For this study, the role of indole in Vibrio cholerae biofilm formation was examined. It was shown that indole activates genes involved in vibrio polysaccharide (VPS) production, which is essential for V. cholerae biofilm formation. In addition to activating these genes, it was determined using microarrays that indole influences the expression of many other genes, including those involved in motility, protozoan grazing resistance, iron utilization, and ion transport. A transposon mutagenesis screen revealed additional components of the indole-VPS regulatory circuitry. The indole signaling cascade includes the DksA protein along with known regulators of VPS production, VpsR and CdgA. A working model is presented in which global control of gene expression by indole is coordinated through σ54 and associated transcriptional regulators.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jessie Colin ◽  
Domenico Libri ◽  
Odil Porrua

Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs) are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs). CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.


2020 ◽  
Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Kristine B. Arnvig

ABSTRACTAlmost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of post-transcriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA, F6, and show it to be dependent on SigF for expression and significantly induced during in vitro starvation and in a mouse model of infection. However, we found no evidence of attenuation of a ΔF6 strain within the first 20 weeks of infection. A further exploration of F6 using in vitro models of infection suggests a role for F6 as a highly specific regulator of the heat shock repressor, HrcA. Our results point towards a role for F6 during periods of low metabolic activity similar to cold shock and associated with nutrient starvation such as that found in human granulomas in later stages of infection.


2019 ◽  
Vol 20 (12) ◽  
pp. 3073 ◽  
Author(s):  
Ana Dienstbier ◽  
Fabian Amman ◽  
Daniel Štipl ◽  
Denisa Petráčková ◽  
Branislav Večerek

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


2009 ◽  
Vol 90 (6) ◽  
pp. 1303-1318 ◽  
Author(s):  
H. C. T. Groom ◽  
E. C. Anderson ◽  
A. M. L. Lever

Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.


2018 ◽  
Vol 86 (4) ◽  
pp. 325
Author(s):  
Przemysław Krzysztof Wirstlein ◽  
Paweł P. Jagodziński ◽  
Małgorzata Szczepańska

The causes of endometriosis remain unexplained. Studying the molecular mechanisms at the origin of the lesions leads to conclusions about the important role of the epigenome. This mini-review is a summary of the current state of knowledge about the processes of epigenetic control of gene expression involved in the pathogenesis of endometriosis.


2009 ◽  
Vol 30 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Gianluca Tell ◽  
David M. Wilson ◽  
Chow H. Lee

ABSTRACT Apurinic/apyrimidinic endonuclease 1 (APE1), an essential protein in mammals, is known to be involved in base excision DNA repair, acting as the major abasic endonuclease; the protein also functions as a redox coactivator of several transcription factors that regulate gene expression. Recent findings highlight a novel role for APE1 in RNA metabolism. The new findings are as follows: (i) APE1 interacts with rRNA and ribosome processing protein NPM1 within the nucleolus; (ii) APE1 interacts with proteins involved in ribosome assembly (i.e., RLA0, RSSA) and RNA maturation (i.e., PRP19, MEP50) within the cytoplasm; (iii) APE1 cleaves abasic RNA; and (iv) APE1 cleaves a specific coding region of c-myc mRNA in vitro and influences c-myc mRNA level and half-life in cells. Such findings on the role of APE1 in the posttranscriptional control of gene expression could explain its ability to influence diverse biological processes and its relocalization to cytoplasmic compartments in some tissues and tumors. In addition, we propose that APE1 serves as a “cleansing” factor for oxidatively damaged abasic RNA, establishing a novel connection between DNA and RNA surveillance mechanisms. In this review, we introduce questions and speculations concerning the role of APE1 in RNA metabolism and discuss the implications of these findings in a broader evolutionary context.


Sign in / Sign up

Export Citation Format

Share Document