Maillard reaction under high hydrostatic pressure: studies on the formation of protein-bound amino acid derivatives

2002 ◽  
Vol 1245 ◽  
pp. 223-227 ◽  
Author(s):  
U Schwarzenbolz ◽  
H Klostermeyer ◽  
Th Henle
Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2829
Author(s):  
Zihuan Wang ◽  
Shaoying Gong ◽  
Yucong Wang ◽  
Danyi Liu ◽  
Jianchun Han

Soybean protein isolate (SPI) is a kind of plant derived protein with high nutritional value, but it is underutilized due to its structural limitations and poor functionalities. This study aimed to investigate the effects of high hydrostatic pressure (HHP) treatment on SPI and sodium alginate (SA) conjugates prepared through the Maillard reaction. The physicochemical properties of the conjugate synthesized under 200 MPa at 60 °C for 24 h (SPI–SA–200) were compared with those of the conjugate synthesized under atmospheric pressure (SPI–SA–0.1), SPI-SA mixture, and SPI. The HHP (200 MPa) significantly hindered the Maillard reaction. This effect was confirmed by performing SDS-PAGE. The alterations in the secondary structures, such as α-helices, were analyzed using circular dichroism spectroscopy and the fluorescence intensity was determined. Emulsifying activity and stability indices of SPI-SA-200 increased by 33.56% and 31.96% respectively in comparison with the SPI–SA–0.1 conjugate. Furthermore, reduced particle sizes (356.18 nm), enhanced zeta potential (‒40.95 mV), and homogeneous droplet sizes were observed for the SPI-SA-200 emulsion. The present study details a practical method to prepare desirable emulsifiers for food processing by controlling the Maillard reaction and improving the functionality of SPI.


2011 ◽  
Vol 77 (7) ◽  
pp. 2552-2554 ◽  
Author(s):  
C. C. J. van Melis ◽  
M. N. Nierop Groot ◽  
T. Abee

ABSTRACTAmino acid- and inosine-induced germination ofBacillus cereusATCC 14579 spores was reversibly inhibited in the presence of 3 mM undissociated sorbic acid. Exposure to high hydrostatic pressure, Ca-dipicolinic acid (DPA), and bryostatin, an activator of PrkC kinase, negated this inhibition, pointing to specific blockage of signal transduction in germinant receptor-mediated germination.


2020 ◽  
Vol 133 (17) ◽  
pp. jcs245555
Author(s):  
Satoshi Uemura ◽  
Takahiro Mochizuki ◽  
Kengo Amemiya ◽  
Goyu Kurosaka ◽  
Miho Yazawa ◽  
...  

ABSTRACTMechanical stresses, including high hydrostatic pressure, elicit diverse physiological effects on organisms. Gtr1, Gtr2, Ego1 (also known as Meh1) and Ego3 (also known as Slm4), central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa (∼250 kg/cm2) stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1 and PIB2 with GLN3. These results suggest that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC–TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrate the regulatory circuit that maintains intracellular amino acid homeostasis and suggest critical roles for the EGOC–TORC1 and Pib2–TORC1 complexes in the growth of yeast under high hydrostatic pressure.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


Sign in / Sign up

Export Citation Format

Share Document