Electrical and sensor properties of FeNbO4: a new sensor material

1999 ◽  
Vol 55 (2-3) ◽  
pp. 170-174 ◽  
Author(s):  
K.I. Gnanasekar ◽  
V. Jayaraman ◽  
E. Prabhu ◽  
T. Gnanasekaran ◽  
G. Periaswami
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1096 ◽  
Author(s):  
Dayana Gulevich ◽  
Marina Rumyantseva ◽  
Evgeny Gerasimov ◽  
Artem Marikutsa ◽  
Valeriy Krivetskiy ◽  
...  

Nanocomposites SnO2/SiO2 with a silicon content of [Si]/([Sn] + [Si]) = 3/86 mol.% were obtained by the hydrothermal method. The composition and microstructure of the samples were characterized by EDX, XRD, HRTEM and single-point Brunauer-Emmet-Teller (BET) methods. The surface sites were investigated using thermal analysis, FTIR and XPS. It is shown that the insertion of silicon dioxide up to the value of [Si]/([Sn] + [Si]) = 19 mol.% stabilizes the growth of SnO2 nanoparticles during high-temperature annealing, which makes it possible to obtain sensor materials operating stably at different temperature conditions. The sensor properties of SnO2 and SnO2/SiO2 nanocomposites were studied by in situ conductivity measurements in the presence of 10–200 ppm CO in dry and humid air in the temperature range of 150–400 °C. It was found that SnO2/SiO2 nanocomposites are more sensitive to CO in humid air as compared to pure SnO2, and the sample with silicon content [Si]/([Sn] + [Si] = 13 mol.% is resistant to changes in relative air humidity (RH = 4%–65%) in the whole temperature range, which makes it a promising sensor material for detecting CO in real conditions. The results are discussed in terms of the changes in the composition of surface-active groups, which alters the reactivity of the obtained materials.


2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1550
Author(s):  
Dominic Greiffenberg ◽  
Marie Andrä ◽  
Rebecca Barten ◽  
Anna Bergamaschi ◽  
Martin Brückner ◽  
...  

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation.


2021 ◽  
Vol 726 ◽  
pp. 138662
Author(s):  
Alp Kılıç ◽  
Onur Alev ◽  
Okan Özdemir ◽  
Leyla Çolakerol Arslan ◽  
Serkan Büyükköse ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2019
Author(s):  
Maria A. Morosanova ◽  
Ksenia V. Chaikun ◽  
Elena I. Morosanova

In order to design a sensor material for total antioxidant capacity determination we have prepared silica and silica–titania xerogels doped with iron(III) and modified with 1,10-phenanthroline. Titanium(IV) tetraethoxyde content in the precursors (titanium(IV) tetraethoxyde and tetraethyl orthosilicate) mixtures has been varied from 0 to 12.5% vol. Iron(III) concentrations in sol has been varied from 1 to 100 mM. The increase of titanium(IV) content has led to a decrease in BET surface area and average pore diameter and an increase of micropore surface area and volume, which has resulted in better iron(III) retention in the xerogels. Iron(III), immobilized in the xerogel matrix, retains its ability to form complexes with 1,10-phenanthroline and to be reduced to iron(II). Static capacities for 1,10-phenanthroline have been determined for all the iron(III) doped xerogels (0.207 mmol/g–0.239 mmol/g) and they are not dependent on the iron(III) content. Sensor materials—xerogels doped with iron(III) and modified with 1,10-phenanthroline—have been used for antioxidants (catechol, gallic and ascorbic acids, and sulphite) solid phase spectrophotometric determination. Limits of detection for catechol, gallic and ascorbic acids, and sulphite equal 7.8 × 10−6 M, 5.4 × 10−6 M, 1.2 × 10−5 M, and 3.1 × 10−4 M, respectively. The increase of titanium(IV) content in sensor material has led to an increase of the reaction rate and the sensitivity of determination. Proposed sensor materials have been applied for total antioxidant capacity (in gallic acid equivalents) determination in soft beverages, have demonstrated high stability, and can be stored up to 6 months at room temperature.


2011 ◽  
Vol 520 (3) ◽  
pp. 904-908 ◽  
Author(s):  
A.V. Marikutsa ◽  
M.N. Rumyantseva ◽  
A.M. Gaskov ◽  
E.A. Konstantinova ◽  
D.A. Grishina ◽  
...  

2017 ◽  
Vol 5 (11) ◽  
pp. 2871-2882 ◽  
Author(s):  
Sudesna Chakravarty ◽  
Arpan Datta ◽  
Neelotpal Sen Sarma

Polyvinyl alcohol-formaldehyde–coumarin 6 (PVFCOU) polymer composite as a novel solid-state sensor material for SO2 gas sensing.


1995 ◽  
Vol 78 (10) ◽  
pp. 6157-6164 ◽  
Author(s):  
L. Kraus ◽  
V. Hašlar ◽  
K. Závěta ◽  
J. Pokorný ◽  
P. Duhaj ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document