An amorphous magnetic bimetallic sensor material

1995 ◽  
Vol 78 (10) ◽  
pp. 6157-6164 ◽  
Author(s):  
L. Kraus ◽  
V. Hašlar ◽  
K. Závěta ◽  
J. Pokorný ◽  
P. Duhaj ◽  
...  
Keyword(s):  
2018 ◽  
Vol 21 (7) ◽  
pp. 462-467
Author(s):  
Babak Sadeghi

Aim and Objective: Ultrafine Ag/ZnO nanotetrapods (AZNTP) have been prepared successfully using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) with a phase separation system, and have been injected into a diethyl/water solution. Materials and Methods: This crystal structure and lattice constant of the AZNTP obtained were investigated by means of a SEM, XRD, TEM and UV-vis spectrum. Results: The results of the present study demonstrated the growth and characterization AZNTP for humidity sensing and DAP plays a key role in the determination of particle morphology. AZNTP films with 23 nm in arm diameter have shown highly sensitive, quick response sensor material that works at room temperature.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2019
Author(s):  
Maria A. Morosanova ◽  
Ksenia V. Chaikun ◽  
Elena I. Morosanova

In order to design a sensor material for total antioxidant capacity determination we have prepared silica and silica–titania xerogels doped with iron(III) and modified with 1,10-phenanthroline. Titanium(IV) tetraethoxyde content in the precursors (titanium(IV) tetraethoxyde and tetraethyl orthosilicate) mixtures has been varied from 0 to 12.5% vol. Iron(III) concentrations in sol has been varied from 1 to 100 mM. The increase of titanium(IV) content has led to a decrease in BET surface area and average pore diameter and an increase of micropore surface area and volume, which has resulted in better iron(III) retention in the xerogels. Iron(III), immobilized in the xerogel matrix, retains its ability to form complexes with 1,10-phenanthroline and to be reduced to iron(II). Static capacities for 1,10-phenanthroline have been determined for all the iron(III) doped xerogels (0.207 mmol/g–0.239 mmol/g) and they are not dependent on the iron(III) content. Sensor materials—xerogels doped with iron(III) and modified with 1,10-phenanthroline—have been used for antioxidants (catechol, gallic and ascorbic acids, and sulphite) solid phase spectrophotometric determination. Limits of detection for catechol, gallic and ascorbic acids, and sulphite equal 7.8 × 10−6 M, 5.4 × 10−6 M, 1.2 × 10−5 M, and 3.1 × 10−4 M, respectively. The increase of titanium(IV) content in sensor material has led to an increase of the reaction rate and the sensitivity of determination. Proposed sensor materials have been applied for total antioxidant capacity (in gallic acid equivalents) determination in soft beverages, have demonstrated high stability, and can be stored up to 6 months at room temperature.


2017 ◽  
Vol 5 (11) ◽  
pp. 2871-2882 ◽  
Author(s):  
Sudesna Chakravarty ◽  
Arpan Datta ◽  
Neelotpal Sen Sarma

Polyvinyl alcohol-formaldehyde–coumarin 6 (PVFCOU) polymer composite as a novel solid-state sensor material for SO2 gas sensing.


2014 ◽  
Vol 896 ◽  
pp. 292-295 ◽  
Author(s):  
Kris Tri Basuki ◽  
Deni Swantomo ◽  
Sigit ◽  
Kartini Megasari

Smart hydrogels which can change their swelling behavior and other properties in response to environmental stimuli such as temperature, pH, solvent composition and electric fields, have attracted great interest as chemical sensor material and controlled release system. The pH stimulus responsive hydrogels were synthesized by gamma-irradiation graft copolymerization of chitosan-acrylamide. In this research the influence of deacetylation process on the hydrogels characterization were investigated by measuring grafting efficiency, gel fraction, swelling degree, and crosslink density. Evidence of grafting was confirmed by FTIR spectroscopy. X-ray diffraction showed reduction in the crystallinity of chitosan with different deacetylation process also after the graft copolymerization reaction. The results showed that decreasing acetyl group of chitosan increase the grafting efficiency, gel fraction and swelling degree. While crystallinity decreased. The hydrogels indicated pH-dependent swelling behaviour.


1999 ◽  
Vol 8 (8-9) ◽  
pp. 1741-1747 ◽  
Author(s):  
J.L. Davidson ◽  
W.P. Kang ◽  
Y. Gurbuz ◽  
K.C. Holmes ◽  
L.G. Davis ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yushen Wang ◽  
Wei Xiong ◽  
Danna Tang ◽  
Liang Hao ◽  
Zheng Li ◽  
...  

Purpose Traditional simulation research of geological and similar engineering models, such as landslides or other natural disaster scenarios, usually focuses on the change of stress and the state of the model before and after destruction. However, the transition of the inner change is usually invisible. To optimize and make models more intelligent, this paper aims to propose a perceptible design to detect the internal temperature change transformed by other energy versions like stress or torsion. Design/methodology/approach In this paper, micron diamond particles were embedded in 3D printed geopolymers as a potential thermal sensor material to detect the inner heat change. The authors use synthetic micron diamond powder to reinforced the anti-corrosion properties and thermal conductivity of geopolymer and apply this novel geopolymer slurry in the direct ink writing (DIW) technique. Findings As a result, the addition of micron diamond powder can greatly influence the rheology of geopolymer slurry and make the geopolymer slurry extrudable and suitable for DIW by reducing the slope of the viscosity of this inorganic colloid. The heat transfer coefficient of the micron diamond (15 Wt.%)/geopolymer was 50% higher than the pure geopolymer, which could be detected by the infrared thermal imager. Besides, the addition of diamond particles also increased the porous rates of geopolymer. Originality/value In conclusion, DIW slurry deposition of micron diamond-embedded geopolymer (MDG) composites could be used to manufacture the multi-functional geological model for thermal imaging and defect detection, which need the characteristic of lightweight, isolation, heat transfer and wave absorption.


2011 ◽  
Vol 160 (1) ◽  
pp. 227-233 ◽  
Author(s):  
Sadaf Yaqub ◽  
Usman Latif ◽  
Franz L. Dickert

Author(s):  
Lei Ma ◽  
Shreyes N. Melkote ◽  
John B. Morehouse ◽  
James B. Castle ◽  
James W. Fonda ◽  
...  

A sensor module that integrates a thin film Polyvinylidene Fluoride (PVDF) piezoelectric strain sensor and an in situ data logging platform has been designed and implemented for monitoring of feed and transverse forces in the peripheral end milling process. The module, which is mounted on the tool shank, measures the dynamic strain(s) produced in the tool and logs the data into an on-board card for later retrieval. The close proximity between the signal source and the PVDF sensor(s) minimizes the attenuation and distortion of the signal along the transmitting path and provides high-fidelity signals. It also facilitates the employment of a first principles model based on Euler-Bernoulli beam theory and the constitutive equations of the piezoelectric sensor material to relate the in situ measured PVDF sensor signals to the feed and transverse forces acting on the tool. The PVDF sensor signals are found to compare well with the force signals measured by a platform type piezoelectric force dynamometer in peripheral end milling experiments.


Sign in / Sign up

Export Citation Format

Share Document