scholarly journals Ultra-Performance Liquid Chromatography/Mass Spectrometry-Based Metabolomics for Discovering Potential Biomarkers and Metabolic Pathways of Colorectal Cancer in Mouse Model (ApcMin/+) and Revealing the Effect of Honokiol

2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Chen ◽  
Bo-lun Shi ◽  
Run-zhi Qi ◽  
Xing Chang ◽  
Hong-gang Zheng

Endogenous metabolites are a class of molecules playing diverse and significant roles in many metabolic pathways for disease. Honokiol (HNK), an active poly-phenolic compound, has shown potent anticancer activities. However, the detailed crucial mechanism regulated by HNK in colorectal cancer remains unclear. In the present study, we investigated the therapeutic effects and the underlying molecular mechanisms of HNK on colorectal cancer in a mouse model (ApcMin/+) by analyzing the urine metabolic profile based on metabolomics, which is a powerful tool for characterizing metabolic disturbances. We found that potential urine biomarkers were involved in the metabolism of compounds such as purines, tyrosines, tryptophans, etc. Moreover, we showed that a total of 27 metabolites were the most contribution biomarkers for intestinal tumors, and we found that the citrate cycle (TCA cycle) was regulated by HNK. In addition, it was suggested that the efficacy of HNK was achieved by affecting the multi-pathway system via influencing relevant metabolic pathways and regulating metabolic function. Our work also showed that high-throughput metabolomics can characterize the regulation of metabolic disorders as a therapeutic strategy to prevent colorectal cancer.


2021 ◽  
Author(s):  
Hareram Birla ◽  
Chetan Keswani ◽  
Saumitra Sen Singh ◽  
Walia Zahra ◽  
Hagera Dilnashin ◽  
...  

Abstract Stress-induced dopaminergic (DAergic) neuronal death in the midbrain region is the primary cause of Parkinson’s disease (PD). From the discovery of L-dopa, multiple drugs were discovered to improve lifestyle of PD patients, but they failed due to their multiple side effects. Tinospora cordifolia (Tc), a medicinal herb has been used in traditional medicines to treat neurodegenerative diseases. In our previous study, the neuroprotective role of Tc against MPTP intoxicated Parkinsonian mice was reported. Here, we further explore the neuroprotective molecular mechanisms of Tc in Rotenone (ROT) intoxicated mouse model through proteomics approach. Mice were pretreated with Tc extract by oral administration, followed by ROT-intoxication. Behavioral tests were performed to check motor functions of mice. Protein was isolated, and label free quantification (LFQ) was carried out to identify differentially expressed protein (DEPs) in control vs. PD and PD vs. treatment group. In this study, we report 800 DEPs in control vs. PD and 133 in PD vs. Treatment group. In silico tools clearly demonstrate significant enrichment of biochemical and molecular pathways with DEPs which are known to be important for PD progression including mitochondrial gene expression, PD pathways, TGF-β signaling, Alzheimer’s disease etc. This results were further validated by qRT-PCR and found that the expression of target gene were identical to the proteomics data. This study provides a novel insight for the disease progression as well new therapeutic tagets. More importantly, it demonstrates that Tc exerts the therapeutic effects through the regulation of multiple pathways to protect DAergic neurons.



2018 ◽  
Vol 315 (3) ◽  
pp. H581-H589
Author(s):  
Dai Kimura ◽  
Jordy Saravia ◽  
Sridhar Jaligama ◽  
Isabella McNamara ◽  
Luan D. Vu ◽  
...  

Pulmonary hypertension (PH) has been observed in up to 75% of infants with moderate to severe respiratory syncytial virus (RSV) bronchiolitis and is associated with significant morbidity and mortality in infants with congenital heart disease. The purpose of the present study was to establish a mouse model of PH secondary to RSV bronchiolitis that mimics the disease etiology as it occurs in infants. Neonatal mice were infected with RSV at 5 days of age and then reinfected 4 wk later. Serum-free medium was administered to age-matched mice as a control. Echocardiography and right ventricular systolic pressure (RVSP) measurements via right jugular vein catheterization were conducted 5 and 6 days after the second infection, respectively. Peripheral capillary oxygen saturation monitoring did not indicate hypoxia at 2–4 days post-RSV infection, before reinfection, and at 2–7 days after reinfection. RSV-infected mice had significantly higher RVSP than control mice. Pulsed-wave Doppler recording of the pulmonary blood flow by echocardiogram demonstrated a significantly shortened pulmonary artery acceleration time and decreased pulmonary artery acceleration time-to-ejection time ratio in RSV-infected mice. Morphometry showed that RSV-infected mice exhibited a significantly higher pulmonary artery medial wall thickness and had an increased number of muscularized pulmonary arteries compared with control mice. These findings, confirmed by RVSP measurements, demonstrate the development of PH in the lungs of mice infected with RSV as neonates. This animal model can be used to study the pathogenesis of PH secondary to RSV bronchiolitis and to assess the effect of treatment interventions. NEW & NOTEWORTHY This is the first mouse model of respiratory syncytial virus-induced pulmonary hypertension, to our knowledge. This model will allow us to decipher molecular mechanisms responsible for the pathogenesis of pulmonary hypertension secondary to respiratory syncytial virus bronchiolitis with the use of knockout and/or transgenic animals and to monitor therapeutic effects with echocardiography.



2021 ◽  
Author(s):  
Yi Wang ◽  
Xiaoxia Wang ◽  
Laurence Don Wai Luu ◽  
Shaojin Chen ◽  
Jin Fu ◽  
...  

CoronaVac (Sinovac), an inactivated vaccine for SARS-CoV-2, has been widely used for immunization. However, analysis of the underlying molecular mechanisms driving CoronaVac-induced immunity is still limited. Here, we applied a systems biology approach to understand the mechanisms behind the adaptive immune response to CoronaVac in a cohort of 50 volunteers immunized with 2 doses of CoronaVac. Vaccination with CoronaVac led to an integrated immune response that included several effector arms of the adaptive immune system including specific IgM/IgG, humoral response and other immune response, as well as the innate immune system as shown by complement activation. Metabolites associated with immunity were also identified implicating the role of metabolites in the humoral response, complement activation and other immune response. Networks associated with the TCA cycle and amino acids metabolic pathways, such as phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glycine, serine and threonine metabolism were tightly coupled with immunity. Critically, we constructed a multifactorial response network (MRN) to analyze the underlying interactions and compared the signatures affected by CoronaVac immunization and SARS-CoV-2 infection to further identify immune signatures and related metabolic pathways altered by CoronaVac immunization. These results suggest that protective immunity against SARS-CoV-2 can be achieved via multiple mechanisms and highlights the utility of a systems biology approach in defining molecular correlates of protection to vaccination.



Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3573
Author(s):  
Azliana Abu Bakar Sajak ◽  
Azrina Azlan ◽  
Faridah Abas ◽  
Hazilawati Hamzah

An herbal mixture composed of lemon, apple cider, garlic, ginger and honey as a polyphenol-rich mixture (PRM) has been reported to contain hypolipidemic activity on human subjects and hyperlipidemic rats. However, the therapeutic effects of PRM on metabolites are not clearly understood. Therefore, this study aimed to provide new information on the causal impact of PRM on the endogenous metabolites, pathways and serum biochemistry. Serum samples of hyperlipidemic rats treated with PRM were subjected to biochemistry (lipid and liver profile) and hydroxymethylglutaryl-CoA enzyme reductase (HMG-CoA reductase) analyses. In contrast, the urine samples were subjected to urine metabolomics using 1H NMR. The serum biochemistry revealed that PRM at 500 mg/kg (PRM-H) managed to lower the total cholesterol level and low-density lipoprotein (LDL-C) (p < 0.05) and reduce the HMG-CoA reductase activity. The pathway analysis from urine metabolomics reveals that PRM-H altered 17 pathways, with the TCA cycle having the highest impact (0.26). Results also showed the relationship between the serum biochemistry of LDL-C and HMG-CoA reductase and urine metabolites (trimethylamine-N-oxide, dimethylglycine, allantoin and succinate). The study’s findings demonstrated the potential of PRM at 500 mg/kg as an anti-hyperlipidemic by altering the TCA cycle, inhibiting HMG-CoA reductase and lowering the LDL-C in high cholesterol rats.



2020 ◽  
Vol 27 (6) ◽  
pp. 983-996 ◽  
Author(s):  
Md. Asaduzzaman Khan ◽  
Mousumi Tania

Background: Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. Objective: In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. Methods: We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. Results: Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. Conclusion: Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.



2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Jae Gwang Park ◽  
Young-Jin Son ◽  
Tae Ho Lee ◽  
Nam Joon Baek ◽  
Deok Hyo Yoon ◽  
...  

Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3β (p-GSK3β) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3β-related caspase-3-dependent apoptosis.



2021 ◽  
Author(s):  
Hareram Birla ◽  
Chetan Keswani ◽  
Saumitra Sen Singh ◽  
Walia Zahra ◽  
Hagera Dilnashin ◽  
...  

Abstract BackgroundStress-induced dopaminergic (DAergic) neuronal death in the midbrain region is the primary cause of Parkinson’s disease (PD). Approximately 2% of the global population aged above 65 years is affected with PD. Various factors are responsible for the death of DAergic neurons, among which mitochondrial dysfunction, oxidative stress, misfolded protein aggregation and neuroinflammation are the primary factors. From the discovery of L-dopa, multiple drugs were discovered to improve lifestyle of PD patients, but they failed due to their multiple side effects. Tinospora cordifolia (Tc), a medicinal herb has been used in traditional medicines to treat neurodegenerative diseases. In our previous study, the neuroprotective role of Tc against MPTP-intoxicated Parkinsonian mice was reported. Here, we further explore the neuroprotective molecular mechanisms of Tc in Rotenone (ROT) intoxicated mouse model through proteomics approach.MethodsMice were pretreated with Tc extract by oral administration, followed by ROT-intoxication (2mg/kg body wt. for 35 days, subcutaneous). Rotarod, catalepsy, footprint and pole tests were carried out at 35th day to observe the neuroprotective effects of Tc on motor impairment caused by ROT in PD mice. Protein from nigrostriatal region of the mid brain was isolated, and label free quantification (LFQ) was carried out to identify differentially expressed protein (DEPs) in control vs. PD and PD vs. treatment group. Bioinformatics analysis of DEPs was carried out to explore the molecular pathway, cellular location, molecular function of proteins.ResultsIn this study, we report 800 DEPs in control vs. PD and 133 in PD vs. Treatment group. In silico tools clearly demonstrate significant enrichment of biochemical and molecular pathways with DEPs which are known to be important for PD progression, including, mitochondrial gene expression, hypothetical network for drug addiction, PD pathways, TGF-β signaling, Alzheimer’s disease, Odorant GPCRs and chemokine signaling pathway.ConclusionThis study provides a novel insight for the disease progression in PD mouse. More importantly, it demonstrates that Tc exerts the therapeutic effects through the regulation of multiple pathways to protect DAergic neurons.



2021 ◽  
Author(s):  
zhaotao wang ◽  
yongping Li ◽  
minyi liu ◽  
danmin chen ◽  
yunxiang ji ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a tumor of the central nervous system carries an extremely poor prognosis. Unfortunately, it also is the most frequently encountered tumor in this region. These tumors arise from glioblastoma stem cells (GSCs), which are glioma cells that are known to possess high degrees of stemness. GBM invades through the process of EMT, which features loss of cell differentiation and polarity. Survivin is a type of apoptotic inhibitor that has been characterized in several malignancies such as glioma. Normal tissues rarely express survivin. On the other hand, 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO) represents an autophagy inhibitor and activates the mTOR pathway. It has been reported that 3BDO shows anti-cancer activities in lung carcinoma. However, the effects of 3BDO on GBM reminds unknown. Therefore, the purpose of this study was to explore the role and molecular mechanisms that 3BDO mediates in GBM.MethodCCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Transwell assay was conducted to examined cell migration and invasion. Western blotting and immunofluorescence staining was used to analyze protein expression levels. Xenograft mouse model was used to evaluate the effect of 3BDO in vivo.ResultsWe found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additonally, 3BDO decreased the sphere formation and stemness markers (sox2, nestin and CD133) in GSCs. 3BDO also inhibited migration, invasion and suppressed EMT markers (N-cadherin, vimentin and snail) in GBM cells. Moreover, we found that 3BDO downregulated survivin expression of survivin both in GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin reduced the therapeutic effects of 3BDO on GBM cell EMT, invasion, migration and proliferation, as well as decreased stemness in GSCs. Finally, we demonstrated that 3BDO inhibited tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO diminished suvivin expression, stemness and levels of EMT makers in vivo.Conclusionsour results demonstrated that 3BDO repressed GBM via downregulating survivin-mediated stemness and EMT both in vitro and in vivo.



2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Marzena Wojcik ◽  
Michal Krawczyk ◽  
Pawel Wojcik ◽  
Katarzyna Cypryk ◽  
Lucyna Alicja Wozniak

The growing prevalence of age-related diseases, especially type 2 diabetes mellitus (T2DM) and cancer, has become global health and economic problems. Due to multifactorial nature of both diseases, their pathophysiology is not completely understood so far. Compelling evidence indicates that increased oxidative stress, resulting from an imbalance between production of reactive oxygen species (ROS) and their clearance by antioxidant defense mechanisms, as well as the proinflammatory state contributes to the development and progression of the diseases. Curcumin (CUR; diferuloylmethane), a well-known polyphenol derived from the rhizomes of turmeric Curcuma longa, has attracted a great deal of attention as a natural compound with beneficial antidiabetic and anticancer properties, partly due to its antioxidative and anti-inflammatory actions. Although this polyphenolic compound is increasingly being recognized for its growing number of protective health effects, the precise molecular mechanisms through which it reduces diabetes- and cancer-related pathological events have not been fully unraveled. Hence, CUR is the subject of intensive research in the fields Diabetology and Oncology as a potential candidate in the treatment of both T2DM and cancer, particularly since current therapeutic options for their treatment are not satisfactory in clinics. In this review, we summarize the recent progress made on the molecular targets and pathways involved in antidiabetic and anticancer activities of CUR that are responsible for its beneficial health effects.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yi Chen ◽  
Jie Liu ◽  
Xiaoting Wu ◽  
Edouard Collins Nice

This study explores the therapeutic effects of Xiangshao granules in a mouse depression model and examines the potential molecular mechanisms involved. After 21 consecutive days of chronic stress challenge, all mice were divided into three groups: control group, depression group, and Xiangshao granule treatment group. On the 22nd day, rats in the Xiangshao granule treatment group received Xiangshao granules via gastrogavage for 3 consecutive weeks. Depression group mice showed a significant reduction of crossings (P<0.01) but not rearings (P<0.05). Serum CRH, CORT, and ACTH levels were significantly increased in depression mice compared with control (P<0.05) and the expression levels of hippocampal BDNF and TrkB were reduced in the model group (P<0.05). However, Xiangshao granule treatment remarkably rescued the decrease in the body weight (P<0.05), increased crossings in the open field test (P<0.05), upregulated the expression of hippocampal BDNF and TrkB expression, and reduced the serum CRH, CORT, and ACTH concentrations compared with the depression group (P<0.05). Collectively, these results demonstrated that Xiangshao granule could effectively induce antidepressive effects in the depression mouse model by ameliorating the expression of hippocampal BDNF and TrkB.



Sign in / Sign up

Export Citation Format

Share Document