State–of–the–Art Solid State Arrays and Advanced Analog Microelectronics for Heliospheric Physics

Author(s):  
H.D. Voss
2021 ◽  
pp. 229919
Author(s):  
Nicola Boaretto ◽  
Iñigo Garbayo ◽  
Sona Valiyaveettil-SobhanRaj ◽  
Amaia Quintela ◽  
Chunmei Li ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuhui He ◽  
Makusu Tsutsui ◽  
Yue Zhou ◽  
Xiang-Shui Miao

AbstractIon transport and hydrodynamic flow through nanometer-sized channels (nanopores) have been increasingly studied owing to not only the fundamental interest in the abundance of novel phenomena that has been observed but also their promising application in innovative nanodevices, including next-generation sequencers, nanopower generators, and memristive synapses. We first review various kinds of materials and the associated state-of-the-art processes developed for fabricating nanoscale pores, including the emerging structures of DNA origami and 2-dimensional nanopores. Then, the unique transport phenomena are examined wherein the surface properties of wall materials play predominant roles in inducing intriguing characteristics, such as ion selectivity and reverse electrodialysis. Finally, we highlight recent progress in the potential application of nanopores, ranging from their use in biosensors to nanopore-based artificial synapses.


Author(s):  
Wayne Cai ◽  
Glenn Daehn ◽  
Anupam Vivek ◽  
Jingjing Li ◽  
Haris Khan ◽  
...  

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state welding. Among many other advantages such as low heat input, solid-state processes are particularly suitable for dissimilar materials joining. In this paper, major solid-state joining technologies such as the linear and rotary friction welding, friction stir welding, ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding. For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/NDE, and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the solid-state processes such as the joining mechanisms, chemical and materials compatibility, surface properties, and process conditions. Finally, the future outlook is presented.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 298 ◽  
Author(s):  
Ahmed Abu-Siada ◽  
Jad Budiri ◽  
Ahmed Abdou

With the global trend to produce clean electrical energy, the penetration of renewable energy sources in existing electricity infrastructure is expected to increase significantly within the next few years. The solid state transformer (SST) is expected to play an essential role in future smart grid topologies. Unlike traditional magnetic transformer, SST is flexible enough to be of modular construction, enabling bi-directional power flow and can be employed for AC and DC grids. Moreover, SSTs can control the voltage level and modulate both active and reactive power at the point of common coupling without the need to external flexible AC transmission system device as per the current practice in conventional electricity grids. The rapid advancement in power semiconductors switching speed and power handling capacity will soon allow for the commercialisation of grid-rated SSTs. This paper is aimed at introducing a state-of-the-art review for SST proposed topologies, controllers, and applications. Additionally, strengths, weaknesses, opportunities, and threats (SWOT) analysis along with a brief review of market drivers for prospective commercialisation are elaborated.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (11) ◽  
pp. 805-813 ◽  
Author(s):  
Herb Goronkin ◽  
Yang Yang

AbstractThis article introduces the November 2004 issue of MRS Bulletin on the state of the art in solid-state memory and storage technologies.The memory business drives hundreds of billions of dollars in sales of electronic equipment per year. The incentive for continuing on the historical track outlined by Moore's law is huge, and this challenge is driving considerable investment from governments around the world as well as in private industry and universities. The problem is this: recognizing that current approaches to semiconductor-based memory are limited, what new technologies can be introduced to continue or even accelerate the pace of complexity? The articles in this issue highlight several commercially available memories, as well as memory technologies that are still in the research and development stages. What will become apparent to the reader is the huge diversity of approaches to this problem.


2011 ◽  
Vol 2 (4) ◽  
pp. 214-221 ◽  
Author(s):  
D. P. Lukyanov ◽  
Yu. V. Filatov ◽  
S. Yu. Shevchenko ◽  
M. M. Shevelko ◽  
A. N. Peregudov ◽  
...  
Keyword(s):  

1988 ◽  
Vol 135 ◽  
Author(s):  
James R. Akridge ◽  
Steven D. Jones ◽  
H. Vourlis

The concept of a solid state energy storage cell has been proven technically feasible by numerous researchers over a period of at least 30 years. [1] Good reviews are available on the state of the art today [2]. The related concept of a solid state rechargeable cell has also been proven technically feasible [3,4]. This paper will describe advances made in primary and secondary solid state cell systems over a period of several years of development at Eveready Battery Co., Inc. Additionally, an attempted experimental verification of “Composite Electrode Theory” proposed by S. Atlung [5] is made.


Sign in / Sign up

Export Citation Format

Share Document