Solid State Primary & Secondary Batteries & Composite Electrode Theory

1988 ◽  
Vol 135 ◽  
Author(s):  
James R. Akridge ◽  
Steven D. Jones ◽  
H. Vourlis

The concept of a solid state energy storage cell has been proven technically feasible by numerous researchers over a period of at least 30 years. [1] Good reviews are available on the state of the art today [2]. The related concept of a solid state rechargeable cell has also been proven technically feasible [3,4]. This paper will describe advances made in primary and secondary solid state cell systems over a period of several years of development at Eveready Battery Co., Inc. Additionally, an attempted experimental verification of “Composite Electrode Theory” proposed by S. Atlung [5] is made.

1998 ◽  
Vol 548 ◽  
Author(s):  
Gregory J. Moore ◽  
M. Stanley Whittingham

ABSTRACTClays have been synthesized and several types of molecules have been intercalated into them to enhance their ionic conductivity. The clay has the molecular formula of Litaeniolite, Li(Mg2Li)Si4O10F2, and the inserted molecules include PEO and two varieties of sulfone, tetramethylene sulfone and ethylmethyl sulfone. These have been made in the interest of electrolytes in lithium secondary batteries in order to produce a truly solid state cell. The products have been thoroughly characterized by x-ray diffraction to verify the uptake of the molecules into the layers, thermal analysis to observe the stabilization of the intercalated molecules, along with impedance measurements to test their conductivity.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3892 ◽  
Author(s):  
Mauger ◽  
Julien ◽  
Paolella ◽  
Armand ◽  
Zaghib

Most of the current commercialized lithium batteries employ liquid electrolytes, despite their vulnerability to battery fire hazards, because they avoid the formation of dendrites on the anode side, which is commonly encountered in solid-state batteries. In a review two years ago, we focused on the challenges and issues facing lithium metal for solid-state rechargeable batteries, pointed to the progress made in addressing this drawback, and concluded that a situation could be envisioned where solid-state batteries would again win over liquid batteries for different applications in the near future. However, an additional drawback of solid-state batteries is the lower ionic conductivity of the electrolyte. Therefore, extensive research efforts have been invested in the last few years to overcome this problem, the reward of which has been significant progress. It is the purpose of this review to report these recent works and the state of the art on solid electrolytes. In addition to solid electrolytes stricto sensu, there are other electrolytes that are mainly solids, but with some added liquid. In some cases, the amount of liquid added is only on the microliter scale; the addition of liquid is aimed at only improving the contact between a solid-state electrolyte and an electrode, for instance. In some other cases, the amount of liquid is larger, as in the case of gel polymers. It is also an acceptable solution if the amount of liquid is small enough to maintain the safety of the cell; such cases are also considered in this review. Different chemistries are examined, including not only Li-air, Li–O2, and Li–S, but also sodium-ion batteries, which are also subject to intensive research. The challenges toward commercialization are also considered.


Author(s):  
D W McComb ◽  
R S Payne ◽  
P L Hansen ◽  
R Brydson

Electron energy-loss near-edge structure (ELNES) is an effective probe of the local geometrical and electronic environment around particular atomic species in the solid state. Energy-loss spectra from several silicate minerals were mostly acquired using a VG HB501 STEM fitted with a parallel detector. Typically a collection angle of ≈8mrad was used, and an energy resolution of ≈0.5eV was achieved.Other authors have indicated that the ELNES of the Si L2,3-edge in α-quartz is dominated by the local environment of the silicon atom i.e. the SiO4 tetrahedron. On this basis, and from results on other minerals, the concept of a coordination fingerprint for certain atoms in minerals has been proposed. The concept is useful in some cases, illustrated here using results from a study of the Al2SiO5 polymorphs (Fig.l). The Al L2,3-edge of kyanite, which contains only 6-coordinate Al, is easily distinguished from andalusite (5- & 6-coordinate Al) and sillimanite (4- & 6-coordinate Al). At the Al K-edge even the latter two samples exhibit differences; with careful processing, the fingerprint for 4-, 5- and 6-coordinate aluminium may be obtained.


2019 ◽  
Vol 19 (25) ◽  
pp. 2348-2356 ◽  
Author(s):  
Neng-Zhong Xie ◽  
Jian-Xiu Li ◽  
Ri-Bo Huang

Acetoin is an important four-carbon compound that has many applications in foods, chemical synthesis, cosmetics, cigarettes, soaps, and detergents. Its stereoisomer (S)-acetoin, a high-value chiral compound, can also be used to synthesize optically active drugs, which could enhance targeting properties and reduce side effects. Recently, considerable progress has been made in the development of biotechnological routes for (S)-acetoin production. In this review, various strategies for biological (S)- acetoin production are summarized, and their constraints and possible solutions are described. Furthermore, future prospects of biological production of (S)-acetoin are discussed.


2021 ◽  
pp. 229919
Author(s):  
Nicola Boaretto ◽  
Iñigo Garbayo ◽  
Sona Valiyaveettil-SobhanRaj ◽  
Amaia Quintela ◽  
Chunmei Li ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuhui He ◽  
Makusu Tsutsui ◽  
Yue Zhou ◽  
Xiang-Shui Miao

AbstractIon transport and hydrodynamic flow through nanometer-sized channels (nanopores) have been increasingly studied owing to not only the fundamental interest in the abundance of novel phenomena that has been observed but also their promising application in innovative nanodevices, including next-generation sequencers, nanopower generators, and memristive synapses. We first review various kinds of materials and the associated state-of-the-art processes developed for fabricating nanoscale pores, including the emerging structures of DNA origami and 2-dimensional nanopores. Then, the unique transport phenomena are examined wherein the surface properties of wall materials play predominant roles in inducing intriguing characteristics, such as ion selectivity and reverse electrodialysis. Finally, we highlight recent progress in the potential application of nanopores, ranging from their use in biosensors to nanopore-based artificial synapses.


1988 ◽  
Vol 135 ◽  
Author(s):  
Michael M Thackeray

AbstractConsiderable efforts are in progress to develop rechargeable batteries as alternative systems to the nickel-cadmium battery. In this regard, several advances have been made in ambient-temperature lithium battery technology, and specifically in the engineering of rechargeable lithium/manganese dioxide cells. This paper reviews the current state of the art in rechargeable Li/MnO2battery technology; particular attention is paid to the structural features of various MnO2electrode materials which influence their electrochemical and cycling behaviour in lithium cells.


Sign in / Sign up

Export Citation Format

Share Document