A State-of-the-Art Review on Solid-State Metal Joining

Author(s):  
Wayne Cai ◽  
Glenn Daehn ◽  
Anupam Vivek ◽  
Jingjing Li ◽  
Haris Khan ◽  
...  

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state welding. Among many other advantages such as low heat input, solid-state processes are particularly suitable for dissimilar materials joining. In this paper, major solid-state joining technologies such as the linear and rotary friction welding, friction stir welding, ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding. For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/NDE, and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the solid-state processes such as the joining mechanisms, chemical and materials compatibility, surface properties, and process conditions. Finally, the future outlook is presented.

Author(s):  
Wayne Cai ◽  
Glenn Daehn ◽  
Anupam Vivek ◽  
Jingjing Li ◽  
Haris Khan ◽  
...  

This paper aims at providing a state-of-the-art review of an increasingly important class of joining technologies called solid-state (SS) welding, as compared to more conventional fusion welding. Among many other advantages such as low heat input, SS processes are particularly suitable for dissimilar materials joining. In this paper, major SS joining technologies such as the linear and rotary friction welding (RFW), friction stir welding (FSW), ultrasonic welding, impact welding, are reviewed, as well as diffusion and roll bonding (RB). For each technology, the joining process is first depicted, followed by the process characterization, modeling and simulation, monitoring/diagnostics/ nondestructive evaluation (NDE), and ended with concluding remarks. A discussion section is provided after reviewing all the technologies on the common critical factors that affect the SS processes. Finally, the future outlook is presented.


2018 ◽  
Vol 224 ◽  
pp. 01118 ◽  
Author(s):  
Zakaria Boumerzoug

Welding is a process of joining materials into one piece. Welding is used extensively for pipe welding, aerospace, aviation, biomedical implants, fabrication of race cars, choppers, etc. Welding processes include thermal fusion joining processes and solid-state joining processes. Among solid-state joining processes, there is a friction stir welding which is applied to join two workpieces without materials. This technique of welding has great is used to weld dissimilar materials. This type of welding is gaining renewed interest, because the main objective is to reduce the total weight and maintaining essential physical properties. The objective of this paper is to focus on the friction stir welding of dissimilar materials.


Author(s):  
Yousef Imani ◽  
Michel Guillot

Invented in 1991, friction stir welding (FSW) is a new solid state joining technique. This process has many advantages over fusion welding techniques including absence of filler material, shielding gas, fumes and intensive light, solid state joining, better microstructure, better strength and fatigue life, and etc. The difficulty with FSW is in the high forces involved especially in axial direction which requires use of robust fixturing and very stiff FSW machines. Reduction of FSW force would simplify implementation of the process on less stiff CNC machines and industrial robots. In this paper axial welding force reduction is investigated by use of tool design and welding parameters in FSW of 3.07 mm thick AA6061-T6 sheets at right angle. Attempt is made to reduce the required axial force while having acceptable ultimate tensile strength (UTS). It is found that shoulder working diameter and shoulder angle are the most important parameters in the axial force determination yet pin angle has minor effect. According to the developed artificial neural network (ANN) model, proper selection of shoulder diameter and angle can lead to approximately 40% force reduction with acceptable UTS. Regions of tool design and welding parameters are found which result in reduced axial force along with acceptable UTS.


Author(s):  
Z. Iqbal ◽  
A. N. Shuaib ◽  
F. Al-Badour ◽  
N. Merah ◽  
A. Bazoune

One of the challenges that impede the use of the relatively new friction stir welding (FSW) process in joining steels and high temperature alloys, as well as dissimilar materials, is the development of the right pin tool material that can stand the severe welding conditions of these alloys. Recent developments in FSW tool materials include tungsten rhenium (W-Re) alloys. The ductile to brittle transition temperature of pure tungsten is reduced by the addition of rhenium (Re).. The addition of Re also improve fracture toughness of the alloy. The major focus of this paper is studying the process of making a friction stir welding bead on mild steel using a proprietary W-25%Re alloy pin tool and investigating the effects of process parameters (i.e. tool rotational and welding speeds) on microstructure, microhardness as well as tool reaction loads. Grain refining of the steel microstructure was observed in all beads. Certain process conditions produced a bead with needle like microstructure with the highest values of hardness. Reaction forces were found to increase with the increase in the tool welding speed and to decrease with the increase of the tool rotational speed. Although the spectroscopic analysis of the beads confirmed the diffusion wear of the tool, the overall tool has shown excellent resistance to mechanical wear.


2016 ◽  
Vol 254 ◽  
pp. 261-266
Author(s):  
Bogdan Radu ◽  
Cosmin Codrean ◽  
Radu Cojocaru ◽  
Cristian Ciucă

Friction Stir Welding (FSW) is an innovative solid state welding process, relatively new in industry, which allow welding of two or more materials which have very different properties, particularly thermal properties as fusion temperature, thermal expansion coefficient, specific heat and thermal conduction and have a predisposition to form intermetallic brittle phases, neither one of the components to be weld reach to the melting point. Being a solid state welding process temperature field is very important for the quality of the welded joint, and a lot of researches focused on this topic. This paper presents some results in modeling and estimation of thermal field developed during FSW of dissimilar joints, using Finite Element Analysis. Numerical modeling of thermal field allows engineers to predict, in advance, the evolution of temperature and to estimate the behavior of the welded materials during the welding process. This will reduce significantly the time and number of experiments that have to be carried out, in the process of establishing a good FSW technology, as well as reducing significantly the cost of the tests.


Author(s):  
A. J Amroliya ◽  
Dr. D. B Jani ◽  
Dr. R. K Shukla

Friction stir welding is a solid state joining process which is used to join metals and alloys having low weldability .Study about the effect of FSW parameters like tool rpm, tool transverse speed and tool pin profile. A vertical milling head is used to produce FSW joints. In this study, solid state joining technology of friction stir welding (FSW) was carried out for Al and Mg butt joints and other dissimilar metals. This review article thoroughly highlights the influence of FSW working parameters on microstructure, mechanical properties. This effort not only sets eminent outcomes of the preceding research personnel but also proposes forthcoming guidelines for FSW of dissimilar metals.


2020 ◽  
Vol 92 (6) ◽  
pp. 23-34
Author(s):  
Robert Siedlec ◽  
Cezary Strąk

Friction welding is one of the most economical process for solid-state joining materials. This technique allows to weld similar and dissimilar materials in a very short time. Friction welding of metal with composites gives new possibilities of application, due to the fact that materials have different physical and mechanical properties. In the study, aluminum alloy 44200 was friction welded to Al/Al2O3 composite. In addition, the following exam were used: optical microscopy, microhardness measurements and also tensile strength for all joints produced by friction welding. All of studies were performed to evaluate the quality of bonding aluminum alloy with metal matrix composite reinforced ceramic phase of Al/Al2O3.


2003 ◽  
Vol 807 ◽  
Author(s):  
Lars Cederqvist

ABSTRACTFriction Stir Welding (FSW) is a novel solid-state joining process where the work pieces are joined together using a rotating non-consumable tool. The process has mainly been used for joining aluminium alloys, and has not yet been used in production for any other metal. However, the results from the development program confirm that FSW can consistently seal 50mm thick copper canisters without creating defects. A new machine is now installed at SKB's Canister Laboratory to further automate the process to production level.


Author(s):  
YongBing Li ◽  
ZeYu Wei ◽  
YaTing Li ◽  
ZhaoZhao Wang ◽  
Xiaobo Zhu

Implementation of lightweight low-ductility materials such as aluminum alloys, magnesium alloys and composite materials has become urgently needed for automotive manufacturers to improve the competitiveness of their products. However, the hybrid use of these materials poses big challenges to joining processes. Self-piercing riveting (SPR) is currently the most popular technique for joining dissimilar materials and has been widely used in joining all-aluminum and multi-material vehicle bodies. However, in riveting magnesium alloys, cracks always occur for its low ductility. In this paper, a hybrid joining process named friction self-piercing riveting (F-SPR), which combines mechanical joining mechanism of SPR with solid-state joining mechanism of friction stir spot welding (FSSW) by making rivet rotating at high speed in riveting process, was proposed aiming at joining the low ductility materials. 1-mm-thick AA6061-T6 and 2-mm-thick AZ31B were used to validate the effectiveness of the F-SPR process. The results showed that the F-SPR process could significantly improve the rivetability of magnesium alloys, and greatly increase the joint strength, comparing with traditional SPR process.


Sign in / Sign up

Export Citation Format

Share Document