3.207 LYCOPENE ATTENUATES OXIDATIVE STRESS AND COGNITIVE DECLINE IN ROTENONE-INDUCED PARKINSON'S DISEASE

2012 ◽  
Vol 18 ◽  
pp. S205
Author(s):  
R. Sandhir ◽  
S. Chauhan ◽  
H. Kaur
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pei-Chin Chen ◽  
Chiun-Chieh Yu ◽  
Yueh-Sheng Chen ◽  
Cheng-Hsien Lu ◽  
Shan-Ho Chan ◽  
...  

Background. Oxidative stress has been implicated in the pathogenesis of many diseases, including Parkinson’s disease. Large protein aggregates may be produced after the breakdown of the proteostasis network due to overt oxidative stress. Meanwhile, brain volume loss and neuropsychiatric deficits are common comorbidities in Parkinson’s disease patients. In this study, we applied a mediation model to determine the potential influences of oxidative stress-related plasma abnormal protein aggregate levels on brain volume and neuropsychiatric consequences in Parkinson’s disease. Method. 31 patients with PD and 24 healthy controls participated in this study. The PD patients were further grouped according to the presentation of cognitive decline or not. All participants received complete examinations to determine plasma abnormal protein aggregates levels, brain volume, and neuropsychiatric performance. The results were collected and analyzed in a single-level three-variable mediation model. Results. Patients with PD cognitive decline exhibited higher plasma NfL levels, decreased regional brain volume, and poor neuropsychiatric subtest results compared with PD patients with normal cognition, with several correlations among these clinical presentations. The mediation model showed that the superior temporal gyrus completely mediated the effects of elevated plasma NfL levels due to the poor psychiatric performance of picture completion and digit span. Conclusion. This study provides insight into the effects of oxidative stress-related plasma abnormal protein aggregate levels on regional brain volume and neuropsychiatric consequences in Parkinson’s disease patients.


2012 ◽  
Vol 11 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Marcella Reale ◽  
Mirko Pesce ◽  
Medha Priyadarshini ◽  
Mohammad A Kamal ◽  
Antonia Patruno

2021 ◽  
Vol 22 (9) ◽  
pp. 4676
Author(s):  
Katja Badanjak ◽  
Sonja Fixemer ◽  
Semra Smajić ◽  
Alexander Skupin ◽  
Anne Grünewald

With the world’s population ageing, the incidence of Parkinson’s disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.


Author(s):  
Emily Forbes ◽  
Thomas F. Tropea ◽  
Sneha Mantri ◽  
Sharon X. Xie ◽  
James F. Morley

2021 ◽  
pp. 1-12
Author(s):  
Rachael A. Lawson ◽  
Caroline H. Williams-Gray ◽  
Marta Camacho ◽  
Gordon W. Duncan ◽  
Tien K. Khoo ◽  
...  

Background: Cognitive impairment is common in Parkinson’s disease (PD), with 80% cumulatively developing dementia (PDD). Objective: We sought to identify tests that are sensitive to change over time above normal ageing so as to refine the neuropsychological tests predictive of PDD. Methods: Participants with newly diagnosed PD (n = 211) and age-matched controls (n = 99) completed a range of clinical and neuropsychological tests as part of the ICICLE-PD study at 18-month intervals over 72 months. Impairments on tests were determined using control means (<1-2SD) and median scores. Mild cognitive impairment (PD-MCI) was classified using 1-2SD below normative values. Linear mixed effects modelling assessed cognitive decline, while Cox regression identified baseline predictors of PDD. Results: At 72 months, 46 (cumulative probability 33.9%) participants had developed PDD; these participants declined at a faster rate in tests of global cognition, verbal fluency, memory and attention (p <  0.05) compared to those who remained dementia-free. Impaired baseline global cognition, visual memory and attention using median cut-offs were the best predictors of early PDD (area under the curve [AUC] = 0.88, p <  0.001) compared to control-generated cut-offs (AUC = 0.76–0.84, p <  0.001) and PD-MCI (AUC] = 0.64–0.81, p <  0.001). Impaired global cognition and semantic fluency were the most useful brief tests employable in a clinical setting (AUC = 0.79, p <  0.001). Conclusion: Verbal fluency, attention and memory were sensitive to change in early PDD and may be suitable tests to measure therapeutic response in future interventions. Impaired global cognition, attention and visual memory were the most accurate predictors for developing a PDD. Future studies could consider adopting these tests for patient clinical trial stratification.


2015 ◽  
Vol 9 ◽  
Author(s):  
Javier Blesa ◽  
Ines Trigo-Damas ◽  
Anna Quiroga-Varela ◽  
Vernice R. Jackson-Lewis

2021 ◽  
Vol 11 (2) ◽  
pp. 455-474
Author(s):  
Per Borghammer

A new model of Parkinson’s disease (PD) pathogenesis is proposed, the α-Synuclein Origin site and Connectome (SOC) model, incorporating two aspects of α-synuclein pathobiology that impact the disease course for each patient: the anatomical location of the initial α-synuclein inclusion, and α-synuclein propagation dependent on the ipsilateral connections that dominate connectivity of the human brain. In some patients, initial α-synuclein pathology occurs within the CNS, leading to a brain-first subtype of PD. In others, pathology begins in the peripheral autonomic nervous system, leading to a body-first subtype. In brain-first cases, it is proposed that the first pathology appears unilaterally, often in the amygdala. If α-synuclein propagation depends on connection strength, a unilateral focus of pathology will disseminate more to the ipsilateral hemisphere. Thus, α-synuclein spreads mainly to ipsilateral structures including the substantia nigra. The asymmetric distribution of pathology leads to asymmetric dopaminergic degeneration and motor asymmetry. In body-first cases, the α-synuclein pathology ascends via the vagus to both the left and right dorsal motor nuclei of the vagus owing to the overlapping parasympathetic innervation of the gut. Consequently, the initial α-synuclein pathology inside the CNS is more symmetric, which promotes more symmetric propagation in the brainstem, leading to more symmetric dopaminergic degeneration and less motor asymmetry. At diagnosis, body-first patients already have a larger, more symmetric burden of α-synuclein pathology, which in turn promotes faster disease progression and accelerated cognitive decline. The SOC model is supported by a considerable body of existing evidence and may have improved explanatory power.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1874
Author(s):  
Suwei Chen ◽  
Sarah J. Annesley ◽  
Rasha A. F. Jasim ◽  
Paul R. Fisher

Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.


Sign in / Sign up

Export Citation Format

Share Document