Changes in the dislocation density fluctuations during plastic deformation

2001 ◽  
Vol 45 (1) ◽  
pp. 55-60 ◽  
Author(s):  
F Székely ◽  
I Groma ◽  
J Lendvai
Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


2011 ◽  
Vol 409 ◽  
pp. 597-602
Author(s):  
Yuichi Mizuno ◽  
Kenji Okushiro ◽  
Yoshiyuki Saito

Grain boundary migration in materials under severe plastic deformation was simulated by the phase field methods. The interface energy and dislocation density on growth kinetics were simulated on systems of 2-dimensional lattice. .In inhomogeneous systems grain size distributions in simulated grain structures were binodal distributions. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. Effect of dislocation on thermodynamic stability was taken into consideration. Dislocation density distribution was calculated by a equation based on the diffusion-reaction equation.. Scaled grain size distribution was known to be affected by the dislocation.


2012 ◽  
Vol 186 ◽  
pp. 331-334
Author(s):  
Mateusz Kopyściański ◽  
Stanislaw Dymek ◽  
Carter Hamilton

This research characterizes the changes in microstructure that occur in friction stir welded extrusions of a novel 7042 aluminum alloy. Due to the presence of scandium the base material preserved the deformation microstructure with elongated grains and fairly high dislocation density. The temperature increase with simultaneous severe plastic deformation occurring during friction stir welding induced significant changes in the microstructure within the weld and its vicinity. The weld center (stir zone) was composed of fine equiaxed grains with residual dislocations and a modest density of small precipitates compared to the neighbouring thermomechanically and heat affected zones where the density of small precipitates was much higher.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2241 ◽  
Author(s):  
Garima Kapoor ◽  
Tibor Kvackaj ◽  
Anita Heczel ◽  
Jana Bidulská ◽  
Róbert Kočiško ◽  
...  

A Cu–1.1%Cr–0.04%Zr (wt.%) alloy was processed by severe plastic deformation (SPD) using the equal channel angular pressing (ECAP) technique at room temperature (RT). It was found that when the number of passes increased from one to four, the dislocation density significantly increased by 35% while the crystallite size decreased by 32%. Subsequent rolling at RT did not influence considerably the crystallite size and dislocation density. At the same time, cryorolling at liquid nitrogen temperature yielded a much higher dislocation density. All the samples contained Cr particles with an average size of 1 µm. Both the size and fraction of the Cr particles did not change during the increase in ECAP passes and the application of rolling after ECAP. The hardness of the severely deformed Cu alloy samples can be well correlated to the dislocation density using the Taylor equation. Heat treatment at 430 °C for 30 min in air caused a significant reduction in the dislocation density for all the deformed samples, while the hardness considerably increased. This apparent contradiction can be explained by the solute oxygen hardening, but the annihilation of mobile dislocations during annealing may also contribute to hardening.


2012 ◽  
Vol 715-716 ◽  
pp. 593-598
Author(s):  
Werner Mitter ◽  
Christof Sommitsch

During plastic deformation, a metallic structure is deformed inhomogeneously near hard inclusions. Hence both the materials strengthening and recovery and thus softening depends on the local position. There are thus high gradients of point defects, such as vacancies and interstitials, of the dislocation density and hence of the strain energy. Those gradients govern the diffusional flow, whose pile-up influences the climbing of edge dislocations, i.e. recovery and materials softening, respectively.


2015 ◽  
Vol 1792 ◽  
Author(s):  
Toshiya Yokogawa ◽  
Masaki Fujikane ◽  
Shijo Nagao ◽  
Roman Nowak

ABSTRACTYield shear stress dependence on dislocation density and crystal orientation was studied in bulk GaN crystals by nanoindentation examination. The yield shear stress decreased with increasing dislocation density which is estimated by dark spot density in cathodoluminescence, and it decreased with decreasing nanoindentation strain-rate. It reached and coincided at 11.5 GPa for both quasi-static deformed c-plane (0001) and m-plane (10-10) GaN. Taking into account theoretical Peierls–Nabarro stress and yield stress for each slip system, these phenomena were concluded to be an evidence of heterogeneous mechanism associated plastic deformation in GaN crystal. Transmission electron microscopy and molecular dynamics simulation also supported the mechanism with obtained r-plane (-1012) slip line right after plastic deformation, so called pop-in event. The agreement of the experimentally obtained atomic shuffle energy with the calculated twin boundary energy suggested that the nucleation of the local metastable twin boundary along the r-plane concentrated the indentation stress, leading to an r-plane slip. This nanoindentation examination is useful for the characterization of crystalline quality because the wafer mapping of the yield shear stress coincided the photoluminescence mapping which shows increase of emission efficiency due to reduction of non-radiative recombination process by dislocation.


2017 ◽  
Vol 905 ◽  
pp. 46-51
Author(s):  
Stefanus Harjo ◽  
Takuro Kawasaki ◽  
Yo Tomota ◽  
Wu Gong

To understand the strengthening mechanism of a metallic material with high dislocation density, the plastic deformation behavior of lath martensite was studied by means of in situ neutron diffraction measurements during tensile deformations using a 22SiMn2TiB steel and a Fe-18Ni alloy. The characteristics of dislocation were analyzed and were discussed with the relation of stress-strain curves. The dislocation densities (ρ) induced by martensitic transformation during heat-treatment in both materials were found to be originally as high as 1015 m-2 order, and subsequently to increase slightly by the tensile deformation. The parameter M value which displays the dislocation arrangement dropped drastically at the beginning of plastic deformation in both materials, indicating that the random arrangement became more like a dipole arrangement.


2017 ◽  
Vol 885 ◽  
pp. 13-18 ◽  
Author(s):  
Moustafa El-Tahawy ◽  
Jenő Gubicza ◽  
Yi Huang ◽  
Hye Lim Choi ◽  
Hee Man Choe ◽  
...  

The effect of different plastic deformation methods on the phase composition, lattice defect structure and hardness in 316L stainless steel was studied. The initial coarse-grained γ-austenite was deformed by cold rolling (CR) or high-pressure torsion (HPT). It was found that the two methods yielded very different phase compositions and microstructures. Martensitic phase transformation was not observed during CR with a thickness reduction of 20%. In γ-austenite phase in addition to the high dislocation density (~10 × 1014 m-2) a significant amount of twin-faults was detected due to the low stacking fault energy. On the other hand, γ-austenite was gradually transformed into ε and α’-martensites with transformation sequences γ→ε→α’ during HPT deformation. A large dislocation density (~133 × 1014 m-2) was detected in the main phase (α’-martensite) at the periphery of the disk after 10 turns of HPT. The high defect density is accompanied by a very small grain size of ~45 nm in the HPT-processed sample, resulting in an very large hardness of 6130 MPa.


Author(s):  
Xueliang Kang ◽  
Shiyun Dong ◽  
Hongbin Wang ◽  
Xiaoting Liu ◽  
Shixing Yan

Seven specimens of 45 steel with different residual strains were prepared by homogeneous plastic tensile test. The microstructure of the specimens was observed by scanning electron microscopy and the texture characteristics of the specimens were studied by X-ray diffraction. The results showed that plastic deformation mainly leads to dislocation increment in the microstructure rather than obvious deformed grain morphology, texture and residual stress. Then the dislocation density of each sample was calculated by X-ray diffraction method. The MBN signals of the samples were tested by magnetic Barkhausen noise method and the corresponding RMS (root mean square) values were calculated. The results showed that the dislocation density increases and the RMS value decreases with the increase of plastic deformation magnitude, the phenomenon was explained deeply. By establishing the correlation between dislocation density and RMS value, it was found that there was a good linear relationship between dislocation density and RMS value. According to the formula provided by the fitting curve, the dislocation density can be predicted by measuring the RMS value of any degree of plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document