scholarly journals 687. The First Seven Days of a Brain Tumor: Glioma Cells Spread Exclusively throughout the Perivascular Compartment of the Brain in a Galectin-1 Dependent Manner. Implications for the Treatment of Brain Tumors with Gene Therapy

2012 ◽  
Vol 20 ◽  
pp. S265-S266
Author(s):  
Shoaib Amin Banday ◽  
Mohammad Khalid Pandit

Introduction: Brain tumor is among the major causes of morbidity and mortality rates worldwide. According to National Brain Tumor Foundation (NBTS), the death rate has nearly increased by as much as 300% over last couple of decades. Tumors can be categorized as benign (non-cancerous) and malignant (cancerous). The type of the brain tumor significantly depends on various factors like the site of its occurrence, its shape, the age of the subject etc. On the other hand, Computer Aided Detection (CAD) has been improving significantly in recent times. The concept, design and implementation of these systems ascend from fairly simple ones to computationally intense ones. For efficient and effective diagnosis and treatment plans in brain tumor studies, it is imperative that an abnormality is detected at an early stage as it provides a little more time for medical professionals to respond. The early detection of diseases has predominantly been possible because of medical imaging techniques developed from past many decades like CT, MRI, PET, SPECT, FMRI etc. The detection of brain tumors however, has always been a challenging task because of the complex structure of the brain, diverse tumor sizes and locations in the brain. Method: This paper proposes an algorithm that can detect the brain tumors in the presence of the Radio-Frequency (RF) inhomoginiety. The algorithm utilizes the Mid Sagittal Plane as a landmark point across which the asymmetry between the two brain hemispheres is estimated using various intensity and texture based parameters. Result: The results show the efficacy of the proposed method for the detection of the brain tumors with an acceptable detection rate. Conclusion: In this paper, we have calculated three textural features from the two hemispheres of the brain viz: Contrast (CON), Entropy (ENT) and Homogeneity (HOM) and three parameters viz: Root Mean Square Error (RMSE), Correlation Co-efficient (CC), and Integral of Absolute Difference (IAD) from the intensity distribution profiles of the two brain hemispheres to predict any presence of the pathology. First a Mid Sagittal Plane (MSP) is obtained on the Magnetic Resonance Images that virtually divides brain into two bilaterally symmetric hemispheres. The block wise texture asymmetry is estimated for these hemispheres using the above 6 parameters.


1993 ◽  
Vol 79 (5) ◽  
pp. 729-735 ◽  
Author(s):  
David Barba ◽  
Joseph Hardin ◽  
Jasodhara Ray ◽  
Fred H. Gage

✓ Gene therapy has many potential applications in central nervous system (CNS) disorders, including the selective killing of tumor cells in the brain. A rat brain tumor model was used to test the herpes simplex virus (HSV)-thymidine kinase (TK) gene for its ability to selectively kill C6 and 9L tumor cells in the brain following systemic administration of the nucleoside analog ganciclovir. The HSV-TK gene was introduced in vitro into tumor cells (C6-TK and 9L-TK), then these modified tumor cells were evaluated for their sensitivity to cell killing by ganciclovir. In a dose-response assay, both C6-TK and 9L-TK cells were 100 times more sensitive to killing by ganciclovir (median lethal dose: C6-TK, 0.1 µg ganciclovir/ml; C6, 5.0 µg ganciclovir/ml) than unmodified wild-type tumor cells or cultured fibroblasts. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to kill established brain tumors in rats as quantified by both stereological assessment of brain tumor volumes and studies of animal survival over 90 days. Rats with brain tumors established by intracerebral injection of wild-type or HSV-TK modified tumor cells or by a combination of wild-type and HSV-TK-modified cells were studied with and without ganciclovir treatments. Stereological methods determined that ganciclovir treatment eliminated tumors composed of HSV-TK-modified cells while control tumors grew as expected (p < 0.001). In survival studies, all 10 rats with 9L-TK tumors treated with ganciclovir survived 90 days while all untreated rats died within 25 days. Curiously, tumors composed of combinations of 9L and 9L-TK cells could be eliminated by ganciclovir treatments even when only one-half of the tumor cells carried the HSV-TK gene. While not completely understood, this additional tumor cell killing appears to be both tumor selective and local in nature. It is concluded that HSV-TK gene therapy with ganciclovir treatment does selectively kill tumor cells in the brain and has many potential applications in CNS disorders, including the treatment of cancer.


2021 ◽  
Vol 11 (10) ◽  
pp. 133-144
Author(s):  
Dipak Chaulagain ◽  
Volodymyr Smolanka ◽  
Andriy Smolanka

People, in general, are affected by a brain or intracranial tumor when abnormal cells started functioning within their brain. This paper explores mainly tumors that affect the brain. Almost every type of brain tumor might create symptoms which are based on the parts of the brain affected. In order to better understand reasons of occurrence intracranial tumors in various sections of the population, the study examined the relationship between sociodemographic variables, i.e., age, gender and marital status and the relative frequency of intracranial tumors as part of a study. Samples are collected based on the information from Uzhhorod Regional Center of Neurosurgery and Neurology in Ukraine. And factors such as age, gender and marital status has been considered to examine tumor size variation. The ratios of organ cancers in Ukrainians are evidently increasing. Besides, there has been growing trend in affected rates in both the genders of CNS cancers have been noticed in all the records. The ratio of most harmful brain tumors is comparatively in minimal ratio in East and Southeast Asia, and India. On the other hand, the highest ratio has been noted in European countries and as well United States, and Ukraine is one of those countries. The major burdens of cancer frequency in Ukraine have been noticed in the lung, breast, and prostate and brain. Of these, brain tumor rate in Ukraine had been hardly studied. The major difference in frequency in Asian and European populations implies the potential influence of genetic or environmental factors in malignant brain tumors. Continuing monitoring of tumor ratio in Ukraine is essential to comprehend how best to reduce cancer burden globally and to explain the causes of provincial variations, for example access to diagnosis methods and ecological exposures. Key words: Intracranial tumors, symptoms, tumor incidence in Ukraine, treatment plans, survival rate of cancer in Ukraine.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Po-Chun Chu ◽  
Wen-Yen Chai ◽  
Han-Yi Hsieh ◽  
Jiun-Jie Wang ◽  
Shiaw-Pyng Wey ◽  
...  

Microbubble-enhanced focused ultrasound (FUS) can enhance the delivery of therapeutic agents into the brain for brain tumor treatment. The purpose of this study was to investigate the influence of brain tumor conditions on the distribution and dynamics of small molecule leakage into targeted regions of the brain after FUS-BBB opening. A total of 34 animals were used, and the process was monitored by 7T-MRI. Evans blue (EB) dye as well as Gd-DTPA served as small molecule substitutes for evaluation of drug behavior. EB was quantified spectrophotometrically. Spin-spin (R1) relaxometry and area under curve (AUC) were measured by MRI to quantify Gd-DTPA. We found that FUS-BBB opening provided a more significant increase in permeability with small tumors. In contrast, accumulation was much higher in large tumors, independent of FUS. The AUC values of Gd-DTPA were well correlated with EB delivery, suggesting that Gd-DTPA was a good indicator of total small-molecule accumulation in the target region. The peripheral regions of large tumors exhibited similar dynamics of small-molecule leakage after FUS-BBB opening as small tumors, suggesting that FUS-BBB opening may have the most significant permeability-enhancing effect on tumor peripheral. This study provides useful information toward designing an optimized FUS-BBB opening strategy to deliver small-molecule therapeutic agents into brain tumors.


Neurographics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 175-185
Author(s):  
B. Rao ◽  
I. Ikuta ◽  
A. Mahajan ◽  
A.A. Karam ◽  
V.M. Zohrabian

Brain tumors are a diverse group of neoplasms that are a source of substantial morbidity and mortality worldwide. Primary gliomas constitute almost all malignant brain tumors, with the most aggressive as well as most common form in adults, grade IV glioma or glioblastoma multiforme, carrying an especially poor prognosis. Neuroimaging is critical not only in the identification of CNS tumor but also in treatment-planning and assessing the response to therapy. Structured reporting continues to gain traction in radiology by reducing report ambiguity and improving consistency, while keeping referring clinicians and patients informed. The Brain Tumor Reporting and Data System (BT-RADS) is a relatively new paradigm that attempts to simplify and maximize consistency in radiologic reporting. BT-RADS incorporates MR imaging features, clinical assessment, and timing of therapy to assign each study a score or category, which is, in turn, linked to a management suggestion. The purpose of this pictorial review article is to familiarize radiologists and nonradiology neurologic specialists alike with BT-RADS, highlighting both advantages and limitations, in the hope that adoption of this system might ultimately facilitate more effective communication and improve consistency among reports.Learning Objective: To describe the features and underscore the advantages and disadvantages of the Brain Tumor Reporting and Data System (BT-RADS), a relatively new classification system that attempts to simplify and maximize consistency in radiologic reporting


2019 ◽  
Vol 12 (4) ◽  
pp. 466-480
Author(s):  
Li Na ◽  
Xiong Zhiyong ◽  
Deng Tianqi ◽  
Ren Kai

Purpose The precise segmentation of brain tumors is the most important and crucial step in their diagnosis and treatment. Due to the presence of noise, uneven gray levels, blurred boundaries and edema around the brain tumor region, the brain tumor image has indistinct features in the tumor region, which pose a problem for diagnostics. The paper aims to discuss these issues. Design/methodology/approach In this paper, the authors propose an original solution for segmentation using Tamura Texture and ensemble Support Vector Machine (SVM) structure. In the proposed technique, 124 features of each voxel are extracted, including Tamura texture features and grayscale features. Then, these features are ranked using the SVM-Recursive Feature Elimination method, which is also adopted to optimize the parameters of the Radial Basis Function kernel of SVMs. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of voxel. Findings The experiments are conducted over a sample data set to be called BraTS2015. The experiments demonstrate that Tamura texture is very useful in the segmentation of brain tumors, especially the feature of line-likeness. The superior performance of the proposed ensemble SVM classifier is demonstrated by comparison with single SVM classifiers as well as other methods. Originality/value The authors propose an original solution for segmentation using Tamura Texture and ensemble SVM structure.


2020 ◽  
Vol 11 (2) ◽  
pp. 97-112 ◽  
Author(s):  
Himanshu Gandhi ◽  
Abhishek Kumar Sharma ◽  
Shikha Mahant ◽  
Deepak N Kapoor

Transport of drugs through the blood–brain barrier to the brain and the toxic effects of drugs on the healthy cells can limit the effectiveness of chemotherapeutic agents. In recent years, magnetic nanoparticles (MNPs) have received much attention as targeted therapeutic and diagnostic systems due to their simplicity, ease of preparation and ability to tailor their properties such as their composition, size, surface morphology, etc. for biomedical applications. MNPs are utilized in drug delivery, radio therapeutics, hyperthermia treatment, gene therapy, biotherapeutics and diagnostic imaging. The present review will address the challenges in brain tumor targeting and discuss the application and recent developments in brain tumor targeting using MNPs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Siyu Xiong ◽  
Guoqing Wu ◽  
Xitian Fan ◽  
Xuan Feng ◽  
Zhongcheng Huang ◽  
...  

Abstract Background Brain tumor segmentation is a challenging problem in medical image processing and analysis. It is a very time-consuming and error-prone task. In order to reduce the burden on physicians and improve the segmentation accuracy, the computer-aided detection (CAD) systems need to be developed. Due to the powerful feature learning ability of the deep learning technology, many deep learning-based methods have been applied to the brain tumor segmentation CAD systems and achieved satisfactory accuracy. However, deep learning neural networks have high computational complexity, and the brain tumor segmentation process consumes significant time. Therefore, in order to achieve the high segmentation accuracy of brain tumors and obtain the segmentation results efficiently, it is very demanding to speed up the segmentation process of brain tumors. Results Compared with traditional computing platforms, the proposed FPGA accelerator has greatly improved the speed and the power consumption. Based on the BraTS19 and BraTS20 dataset, our FPGA-based brain tumor segmentation accelerator is 5.21 and 44.47 times faster than the TITAN V GPU and the Xeon CPU. In addition, by comparing energy efficiency, our design can achieve 11.22 and 82.33 times energy efficiency than GPU and CPU, respectively. Conclusion We quantize and retrain the neural network for brain tumor segmentation and merge batch normalization layers to reduce the parameter size and computational complexity. The FPGA-based brain tumor segmentation accelerator is designed to map the quantized neural network model. The accelerator can increase the segmentation speed and reduce the power consumption on the basis of ensuring high accuracy which provides a new direction for the automatic segmentation and remote diagnosis of brain tumors.


Sign in / Sign up

Export Citation Format

Share Document