Phytochemical, Anti-oxidant, Larvicidal, and Antimicrobial Activities of Castor ( Ricinus communis ) Synthesized Silver Nanoparticles

2017 ◽  
Vol 9 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Namita Soni ◽  
Ramesh C. Dhiman
2021 ◽  
Vol 9 (6) ◽  
pp. 678
Author(s):  
Kaliyamoorthy Kalidasan ◽  
Nabikhan Asmathunisha ◽  
Venugopal Gomathi ◽  
Laurent Dufossé ◽  
Kandasamy Kathiresan

This work deals with the identification of a predominant thraustochytrid strain, the optimization of culture conditions, the synthesis of nanoparticles, and the evaluation of antioxidant and antimicrobial activities in biomass extracts and nanoparticles. Thraustochytrium kinnei was identified as a predominant strain from decomposing mangrove leaves, and its culture conditions were optimized for maximum biomass production of 13.53 g·L−1, with total lipids of 41.33% and DHA of 39.16% of total fatty acids. Furthermore, the strain was shown to synthesize gold and silver nanoparticles in the size ranges of 10–85 nm and 5–90 nm, respectively. Silver nanoparticles exhibited higher total antioxidant and DPPH activities than gold nanoparticles and methanol extract of the strain. The silver nanoparticles showed higher antimicrobial activity than gold nanoparticles and petroleum ether extract of the strain. Thus, Thraustochytrium kinnei is proven to be promising for synthesis of silver nanoparticles with high antioxidant and antimicrobial activity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1343
Author(s):  
Caroline Tyavambiza ◽  
Abdulrahman Mohammed Elbagory ◽  
Abram Madimabe Madiehe ◽  
Mervin Meyer ◽  
Samantha Meyer

Cotyledon orbiculata, commonly known as pig’s ear, is an important medicinal plant of South Africa. It is used in traditional medicine to treat many ailments, including skin eruptions, abscesses, inflammation, boils and acne. Many plants have been used to synthesize metallic nanoparticles, particularly silver nanoparticles (AgNPs). However, the synthesis of AgNPs from C. orbiculata has never been reported before. The aim of this study was to synthesize AgNPs using C. orbiculata and evaluate their antimicrobial and immunomodulatory properties. AgNPs were synthesized and characterized using Ultraviolet-Visible Spectroscopy (UV-Vis), Dynamic Light Scattering (DLS) and High-Resolution Transmission Electron Microscopy (HR-TEM). The antimicrobial activities of the nanoparticles against skin pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Methicillin Resistance Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) as well as their effects on cytokine production in macrophages (differentiated from THP-1 cells) were evaluated. The AgNPs from C. orbiculata exhibited antimicrobial activity, with the highest activity observed against P. aeruginosa (5 µg/mL). The AgNPs also showed anti-inflammatory activity by inhibiting the secretion of pro-inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta) in lipopolysaccharide-treated macrophages. This concludes that the AgNPs produced from C. orbiculata possess antimicrobial and anti-inflammation properties.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2804-2837
Author(s):  
Chhangte Vanlalveni ◽  
Samuel Lallianrawna ◽  
Ayushi Biswas ◽  
Manickam Selvaraj ◽  
Bishwajit Changmai ◽  
...  

Herein, we have reviewed new findings in the research domain of the green synthesis of silver nanoparticles using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015.


2021 ◽  
Vol 17 ◽  
Author(s):  
Amita Sahu ◽  
Sudhanshu Shekhar Swain ◽  
Goutam Ghosh ◽  
Deepak Pradhan ◽  
Dipak Kumar Sahu ◽  
...  

Background: Literature evidences as well as traditional uses of genus Alphonsea reveal significant antimicrobial and anti-oxidant activity, which encourages to consider A. madraspatana to have potent antimicrobials, there by offering potential adjuncts to synthesize improved antimicrobial Silver nanoparticles (AgNPs). The objective of the present exposition is to optimize reaction parameters to synthesize antimicrobial Biogenic Silver nanoparticles (BAgNPs) from extract of A. madraspatana leaves (AML) and to evaluate the effect against bacteria. Methods: BAgNPs was synthesized by optimized reaction. The Synthesized nanoparticles were characterized by UV, IR, ICP-MS and XRD analysis. The antibacterial potency of optimized BAgNPs was evaluated against E. coli by comparing with positive controls. Results: Results of optimization process indicate nanoscale BAgNPs were produced at operating temp. of 45°C for 120 min at pH 8 with 1:5 volume ratio of AgNO3 and extract. Optimized BAgNPs exhibits relatively higher antimicrobial activity (31±1mm) compared to Ciprofloxacin (27±1mm) and marketed nano silver (28± 2 mm). The developed BAgNPs shows comparable biofilm inhibition (86.50%) as compared to marketed nano silver (88.10%) and Ciprofloxacin (83.10%). Conclusion: Experimental evidence suggests methanolic extract of AML under predefined conditions successfully generate nano-template of silver with better antibacterial response against E. coli.


2021 ◽  
Vol 101 (1) ◽  
pp. 425-432
Author(s):  
Laura García-Hernández ◽  
Flores Jose Antonio ◽  
Pedro Ramirez Ortega ◽  
Senidia Paola León Martínez ◽  
Diana Laura González Cordova ◽  
...  

2013 ◽  
Vol 8 (1) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Ismail Kiran ◽  
Özge Özşen ◽  
Turgay Çelik ◽  
Semra İlhan ◽  
Bükay Yenice Gürsu ◽  
...  

Isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), a monoterpene, and the structurally related 1,8-cineole and camphor, have demonstrated a protective effect against cancer, biological activity against a variety of microorganisms, and anti-oxidant properties. The derivatization of isophorone is, therefore, an important field of xenobiochemistry, pharmacology and toxicology. The aim of this study was to obtain derivatives of isophorone through microbial biotransformation and evaluate the biotransformation metabolites as potential antimicrobial agents. Incubation of isophorone with the fungi Alternaria alternata and Neurospora crassa afforded 4α-hydroxy- and 7-hydroxy-isophorone as transformation metabolites. The antimicrobial activities of isophorone and the metabolites were evaluated in vitro both by using agar dilution and microdilution methods. However, no significant antibacterial activity was observed when compared with those of standard substances.


2016 ◽  
Vol 10 (8) ◽  
pp. 260-270 ◽  
Author(s):  
Mansoor Shazia ◽  
Khan Imran ◽  
Fatima Jasmine ◽  
Saeed Mohd ◽  
Mustafa Huma

2020 ◽  
Vol 1 (2) ◽  
pp. 8-15
Author(s):  
Gislanne Stéphanne Estevam da Silva ◽  
Rivaldo Leon Bezerra Cabral ◽  
Nathalie de Sena Pereira ◽  
José Heriberto Oliveira do Nascimento ◽  
Dany G kramer

Silver nanoparticles (AgNP) can be incorporated into medical devices, such as tissues, to circumvent bacterial resistance such as Klebsiella spp, which can lead to skin and mucosal infections. Thus, the aim of the present study was to synthesize silver nanoparticles for later incorporation into cotton fabrics and in vitro tests against Klebsiella spp. The AgNP colloidal solution was synthesized (AgNO3 - 0.1 mM, 100 mM trisodium citrate, polyvinylpyrrolidone - 0.24 g, H2OH2) and then impregnated into the cotton fabric pretreated with poly diallyl dimethylammonium chloride (PDDA) of 100/500 tissue, shaken for 30 minutes). The material produced was analyzed by the FTIR; DLS and reflectance spectroscopy. The tests of the antimicrobial activities were by the microdilution technique against Klebsiella spp, in tubes containing Brain Heart Infusion (BHI), with the solution of silver (1); Tissue containing AgNP - 4 mm (2); Negative control (3) and positive control - ceftriaxone (4). Regarding MIC, the inhibitory activity occurred of the dilutions between 1/2 and 1/16. The AgNP particles had an average size of 24.75 nm. As synthesized AgNPs demonstrate the excellent antimicrobial activity against Klebsiella spp, with special emphasis on applications in nanotechnology and nanomedicine, targeting multiresistant antibiotic bacteria.


Sign in / Sign up

Export Citation Format

Share Document