The Fluid Dynamic Process of Large-scale Mineralization in the Lanping Basin, Yunnan, SW China: Evidence from Fluid Inclusions and Basin Fluid Modeling

2007 ◽  
Vol 14 (5) ◽  
pp. 147-155 ◽  
Author(s):  
Chunji XUE ◽  
Guoxiang CHI ◽  
Yuchuan CHEN ◽  
Rong ZENG ◽  
Yongbao GAO ◽  
...  
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2011 ◽  
Vol 64 (1) ◽  
pp. 263-270 ◽  
Author(s):  
K. Klepiszewski ◽  
M. Teufel ◽  
S. Seiffert ◽  
E. Henry

Generally, studies investigating the treatment efficiency of tank structures for storm water or waste water treatment observe pollutant flows in connection with conditions of hydraulic loading. Further investigations evaluate internal processes in tank structures using computational fluid dynamic (CFD) modelling or lab scale tests. As flow paths inside of tank structures have a considerable influence on the treatment efficiency, flow velocity profile (FVP) measurements can provide a possibility to calibrate CFD models and contribute to a better understanding of pollutant transport processes in these structures. This study focuses on tests carried out with the prototype FVP measurement device OCM Pro LR by NIVUS in a sedimentation tank with combined sewer overflow (CSO) situated in Petange, Luxembourg. The OCM Pro LR measurement system analyses the echo of ultrasonic signals of different flow depths to get a detailed FVP. A comparison of flow velocity measured by OCM Pro LR with a vane measurement showed good conformity. The FVPs measured by OCM Pro LR point out shortcut flows within the tank structure during CSO events, which could cause a reduction of the cleaning efficiency of the structure. The results prove the applicability of FVP measurements in large-scale structures.


2018 ◽  
Vol 619 ◽  
pp. A82
Author(s):  
Man Zhang ◽  
Yu Fen Zhou ◽  
Xue Shang Feng ◽  
Bo Li ◽  
Ming Xiong

In this paper, we have used a three-dimensional numerical magnetohydrodynamics model to study the reconnection process between magnetic cloud and heliospheric current sheet. Within a steady-state heliospheric model that gives a reasonable large-scale structure of the solar wind near solar minimum, we injected a spherical plasmoid to mimic a magnetic cloud. When the magnetic cloud moves to the heliospheric current sheet, the dynamic process causes the current sheet to become gradually thinner and the magnetic reconnection begin. The numerical simulation can reproduce the basic characteristics of the magnetic reconnection, such as the correlated/anticorrelated signatures in V and B passing a reconnection exhaust. Depending on the initial magnetic helicity of the cloud, magnetic reconnection occurs at points along the boundary of the two systems where antiparallel field lines are forced together. We find the magnetic filed and velocity in the MC have a effect on the reconnection rate, and the magnitude of velocity can also effect the beginning time of reconnection. These results are helpful in understanding and identifying the dynamic process occurring between the magnetic cloud and the heliospheric current sheet.


1990 ◽  
Vol 54 (375) ◽  
pp. 325-333 ◽  
Author(s):  
U. F. Hein ◽  
V. Lüders ◽  
P. Dulski

AbstractThe fluorite vein deposits of the Southern Alps (Northern Italy) exhibit similar geotectonic, paragenetic, and textural characteristics permitting useful comparison between their fluid inclusions and REE systematics. Due to differing post-crystallization deformation, primary fluid inclusions can only be observed in the northernmost deposit (Rabenstein/Corvara). Here, fluorite precipitated from highly saline H2O-NaCl-CaCl2 solutions containing appreciable H2S. During vein formation the fluids changed from low salinity (≈7 wt. % NaCl equiv.) and medium temperature (Th ≈ 230°C), corresponding to the precipitation of early quartz, towards high salinity (≈20 wt.% NaCl equiv.) and lower temperatures (Th ≈170°C during the deposition of late-stage fluorite. This was accompanied by an increase in Ca in solution.REE distribution patterns for the northern deposits are very uniform suggesting a similar source, a large-scale homogeneous fluid system, and fluorite precipitation under reducing conditions. By comparison the southern deposits exhibit contrasting patterns documenting a more complex history, probably due to their remobilization from an earlier mineralization. None of the fluorites shows a ‘primary’ magmatic REE distribution pattern, thereby favouring a genetic model for fluorite mineralization involving the leaching of suitable rock units by formation waters.


Author(s):  
Alexei Miassoedov ◽  
Hans Alsmeyer ◽  
Leonhard Meyer ◽  
Martin Steinbrueck ◽  
Pavlin Groudev ◽  
...  

The LACOMERA project at the Forschungszentrum Karlsruhe, Germany, is a 4 year action within the 5th Framework Programme of the EU which started in September 2002. Overall objective of the project is to offer research institutions from the EU member countries and associated states access to four large-scale experimental facilities QUENCH, LIVE, DISCO, and COMET. These facilities are being used to investigate core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity, and finally corium concrete interaction and corium coolability in the reactor cavity. The paper summarizes the main results obtained in the following three experiments: QUENCH-L2: Boil-off of a flooded bundle. The test is of a generic interest for all reactor types, provided a link between the severe accident and design basis areas, and would deliver oxidation and thermal hydraulic data at high temperatures. DISCO-L2: Fluid-dynamic, thermal, and chemical processes during melt ejection out of a breach in the lower head of a pressure vessel of the VVER-1000/320 type of reactor. COMET-L2: Investigation of long-term melt-concrete interaction of metallic corium in a cylindrical siliceous concrete cavity under dry conditions with decay heat simulation of intermediate power during the first test phase, and subsequently at reduced power during the second test phase.


Author(s):  
R. Marinari ◽  
I. Di Piazza ◽  
M. Angelucci ◽  
D. Martelli

In the context of the studies on GEN. IV/ADS nuclear systems, the correct evaluations of the temperature distribution in the fuel pin bundle is of central interest. In particular, the use of lead or lead-bismuth eutectic (LBE) as coolant for the new generation fast reactors is one of the most promising choices. Due to the high density and high conductivity of lead or LBE, a detailed analysis of the thermo-fluid dynamic behavior of the heavy liquid metal (HLM) inside the sub-channels of a fuel rod bundle is necessary in order to support the Front-End Engineering Design (FEED) of GEN. IV/ADS prototypes and demonstrators. In this frame, the synergy between numerical analysis by CFD and data coming from large experimental facilities seems to be crucial to assess the feasibility of the components. At ENEA-Brasimone R.C., large experimental facilities exist to study HLM free, forced and mixed convection in loops and pools: e.g. NACIE-UP is a large scale LBE loop for mixed convection experiments. The MYRRHA-19 like Fuel Pin Bundle Simulator installed in the NACIE-UP facility allows to make non-uniform and dissymmetric tests with only a few pins heated. This technical feature of the FPS is very interesting for CFD validation and this kind of data tests in HLM fuel bundles are not so common in the literature. In the present paper, a post-test validation is made by a detailed CFD model of the test section. Experimental data, statistically treated by the error propagation theory, are briefly presented and a preliminary comparison with CFD results using different models/turbulent Prandtl numbers are shown. Three monitored section at different levels are compared both for wall and bulk temperatures. This post-test comparison with this experimental configuration is unique and represents a further step towards the validation of the CFD models and methods in fuel bundle geometries cooled by HLM.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 713 ◽  
Author(s):  
Lü-Yun Zhu ◽  
Shao-Yong Jiang ◽  
Run-Sheng Chen ◽  
Ying Ma

The Shangfang deposit is a recently discovered large-scale tungsten deposit (66,500 t at 0.23% WO3), which is located near the western boundary of the Southeastern Coastal Metallogenic Belt (i.e., Zhenghe–Dafu fault), and adjacent to the northeast of the Nanling Range Metallogenic Belt. Unlike many other W–Sn deposits in this region that occur within or near the granites, the orebodies in the Sangfang deposit all occur within the amphibolite of Palaeoproterozoic Dajinshan Formation and have no direct contact to the granite. In this study, we carry out a thermal ionization mass spectrometer (TIMS) Sm-Nd isotope analysis for the scheelites from the orebody, which yields a Sm–Nd isochron age of 157.9 ± 6.7 Ma (MSWD = 0.96). This age is in good agreement with the previously published zircon U–Pb age (158.8 ± 1.6 Ma) for the granite and the molybdenite Re–Os age (158.1 ± 5.4 Ma) in the deposit. Previous studies demonstrated that the W–Sn deposits occurring between Southeastern Nanling Range and Coastal Metallogenic Belt mainly formed in the two periods of 160–150 Ma and 140–135 Ma, respectively. The microthermometry results of fluid inclusions in scheelite and quartz are suggestive of a near-isothermal (possibly poly-baric) mixing between two fluids of differing salinities. The H–O isotope results illustrate that the ore-forming fluids are derived from magma and might be equilibrated with metamorphic rocks at high temperature. The Jurassic granite pluton should play a critical role for the large hydrothermal system producing the Shangfang W deposit. Furthermore, the negative εNd(t) of −14.6 obtained in the Shanfang scheelite suggests for the involvement of the deep crustal materials. In general, subduction of the paleo-Pacific plate caused an extensional tectonic setting with formation of the Shangfang granites and related W mineralization, the geological background of which is similar to other W deposits in the Nanling Range Metallogenic Belt.


Sign in / Sign up

Export Citation Format

Share Document