scholarly journals The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution

2021 ◽  
Vol 20 (2) ◽  
pp. 482-493 ◽  
Author(s):  
Yun-shan YANG ◽  
Xiao-xia GUO ◽  
Hui-fang LIU ◽  
Guang-zhou LIU ◽  
Wan-mao LIU ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Yunshan Yang ◽  
Xiaoxia Guo ◽  
Guangzhou Liu ◽  
Wanmao Liu ◽  
Jun Xue ◽  
...  

Solar radiation is the energy source for crop growth, as well as for the processes of accumulation, distribution, and transfer of photosynthetic products that determine maize yield. Therefore, learning the effects of different solar radiation amounts on maize growth is especially important. The present study focused on the quantitative relationships between solar radiation amounts and dry matter accumulations and transfers in maize. Over two continuous years (2017 and 2018) of field experiments, maize hybrids XY335 and ZD958 were grown at densities of 4.5 × 104 (D1), 7.5 × 104 (D2), 9 × 104 (D3), 10.5 × 104 (D4), and 12 × 104 (D5) plants/ha at Qitai Farm (89°34′E, 44°12′N), Xinjiang, China. Shading levels were 15% (S1), 30% (S2), and 50% (S3) of natural light and no shading (CK). The results showed that the yields of the commonly planted cultivars XY335 and ZD958 at S1, S2, and S3 (increasing shade treatments) were 7.3, 21.2, and 57.6% and 11.7, 31.0, and 61.8% lower than the control yields, respectively. Also, vegetative organ dry matter translocation (DMT) and its contribution to grain increased as shading levels increased under different densities. The dry matter assimilation amount after silking (AADMAS) increased as solar radiation and planting density increased. When solar radiation was <580.9 and 663.6 MJ/m2, for XY335 and ZD958, respectively, the increase in the AADMAS was primarily related to solar radiation amounts; and when solar radiation was higher than those amounts for those hybrids, an increase in the AADMAS was primarily related to planting density. Photosynthate accumulation is a key determinant of maize yield, and the contributions of the vegetative organs to the grain did not compensate for the reduced yield caused by insufficient light. Between the two cultivars, XY335 showed a better resistance to weak light than ZD958 did. To help guarantee a high maize yield under weak light conditions, it is imperative to select cultivars that have great stay-green and photosynthetic efficiency characteristics.


1993 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. M. Bennett ◽  
T. R. Sinclair ◽  
Li Ma ◽  
K. J. Boote

Abstract Knowledge of the interception of solar radiation by crop canopies and the use of that radiation for carbon assimilation is essential for understanding crop growth and yield as a function of the environment. A field experiment was conducted in 1990 at Gainesville, FL to determine if differences in single leaf carbon exchange rate (CER), canopy radiation interception, radiation use efficiency (g dry matter produced per unit of solar radiation intercepted), and increase in seed harvest index with time exist among several commonly grown peanut (Arachis hypogaea L.) cultivars. Four cultivars (Early Bunch, Florunner, Marc I, and Southern Runner) were grown in field plots on a Kendrick fine sand (a loamy, siliceous, hyperthermic Arenic Paleudult) under fully irrigated, intensive management. Total crop and seed dry matter accumulation were determined, and canopy radiation interception measured at weekly intervals. CER of uppermost, fully expanded sunlit leaves were determined at midday at 2-wk intervals. Single leaf CER's were similar among cultivars (25 to 35 μmol CO2 m-2 s-1) and relatively stable throughout most of the season, before declining during late seed filling. Although interception of radiation differed somewhat among cultivars during early canopy development, total crop dry matter accumulation was linearly related to the cumulative amount of radiation intercepted by all four cultivars (r2=≥0.99). Radiation use efficiency was similar among all cultivars with a mean of 1.00 g dry matter accumulated per MJ of intercepted solar radiation. The increase in seed harvest index with time was linear (r2≤0.94) and the rates of increase were similar among the Early Bunch, Florunner, and Marc I cultivars (0.0058 d-1), but lower (0.0043 d-1) for the later maturing Southern Runner cultivar. Results from this study indicated that the primary differences among these four cultivars were in early-season development of the leaf canopy and resultant radiation interception and the rate of seed growth, rather than the capacity to assimilate carbon dioxide.


2021 ◽  
Vol 20 (2) ◽  
pp. 363-370 ◽  
Author(s):  
Guang-zhou LIU ◽  
Wan-mao LIU ◽  
Peng HOU ◽  
Bo MING ◽  
Yun-shan YANG ◽  
...  

2004 ◽  
Vol 61 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Sidinei José Lopes ◽  
Durval Dourado Neto ◽  
Paulo Augusto Manfron ◽  
Luís Renato Jasniewicz

The protected and hydroponics cultivation are increasing in Brazil, demanding a better knowledge of crop performance in this environment. Plant dry matter accumulation as a function of solar radiation, temperature, relative humidity and other weather parameters in greenhouse is different when compared with field cultivation. With the purpose of proposing models to characterize the temporal variation of leaf and total dry matter production of hydroponics-grown lettuce (Lactuca sativa L.) and to determine the flowering period and the maximum dry matter accumulation rate as a function of plant relative development (relative degree-days), solar radiation and effective thermal index, two experiments (Spring and Autumn) were carried out in the greenhouse, at Santa Maria, Rio Grande do Sul State, Brazil. Growth and development models are useful in obtaining basic information on the plant <FONT FACE=Symbol>´</FONT> environment interactions, maximizing the use of resources in greenhouse, as well as, to define the best form of crop management. The cultivar Vera was chosen as function of its earliness. Models were proposed to estimate the temporal variation of dry matter accumulation, where the best results for relative development were obtained using effective degree-days, characterizing the importance of the air temperature for the vegetative phase and the solar radiation for the reproductive. The yield and quality of the lettuce seeds evidenced a high potential of hydroponics technique.


1977 ◽  
Vol 55 (16) ◽  
pp. 2196-2201 ◽  
Author(s):  
J. L. Heilman ◽  
E. T. Kanemasu ◽  
G. M. Paulsen

Equations to estimate gross photosynthesis, respiration, and dry-matter accumulation for soybean from daily estimates of intercepted, photosynthetically active radiation (PAR) were developed from field measurements. We found that gross photosynthesis was a function of intercepted PAR and that 24-h dark respiration was a function of gross photosynthesis. In addition, we developed equations relating intercepted PAR to leaf area index (LAI) and solar radiation. We assumed that gross photosynthesis was reduced when soil-water depletion was greater than 65%. The growth model predicted accumulated dry matter for soybean in 1974, 1975, and 1976 to within 2.7 mg cm−2 of observed values.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Fábio Rafael Echer ◽  
Priscila Roberta Leme Zanfolin ◽  
Ana Carolina Monico Moreira ◽  
Ana Cláudia Pacheco Santos ◽  
Pedro Henrique Gorni

ABSTRACT: Cotton cultivation in Brazil tends to occur mostly in the rainy season, and at the time of developing the crop there are often prolonged periods of low solar radiation. The objective of this work was to evaluate the root development of cotton cultivars subjected to shading in the initial phase. The experiment was carried out in a greenhouse, using rhizotrons. The experimental design was a 2x2 factorial in randomized blocks with five replications. The treatments were composed of cotton cultivars TMG 1WS (early) and TMG 8WS (late) and luminosity conditions: non-shaded and shaded (50% reduction of luminosity). There were no interactions between the factors “shading” and “cultivars” for any parameter evaluated. Shading reduced total and lateral root growth from the 21 days after emergence (DAE) and the main root at 24DAE. Shading caused reductions in length (60%), surface (65%), mean diameter (15%), root volume (69%), root dry matter mass (83%) and shoot (64%), as well as decreasing the content (36%) and the accumulation of carbohydrates in the shoot (73%). Shading at early cotton development reduces the shoot carbohydrates production, affecting dry matter accumulation and root growth, and this response is independent of the cultivar.


Sign in / Sign up

Export Citation Format

Share Document