Social Meanings of the North–South Divide in the Netherlands and Their Linkage to Standard Dutch and Various Dialects

2018 ◽  
pp. 96-117
Author(s):  
Leonie Cornips
1991 ◽  
Vol 23 (1-3) ◽  
pp. 49-55
Author(s):  
E. H. baron van Tuyll van Serooskerken

An inventory is made of the effects of sea level rise and expected climatic change on the level of the district water authorities in the Netherlands and especially the “hoogheemraadschap” of Rhineland in the next 100-200 years. Special attention is paid to the effects on land utilization, coastal defence and water control. The first is hard to describe by lack of research, the second can already be determined in terms of cost; the third can be described in its effects on brackishness and water provision with indication of policies and measures to be taken. Preliminary conclusions are that larger efforts on coastal defence - even with present techniques - will be a realistic answer in terms of cost. The foreseen increase of brackishness in area and salt concentration, will give a significant extra need for fresh water. High cost and even higher risks have to be expected with regard to measures to neutralize the effects of a water surplus in winter and a growing water shortage in (late) summer, while the cost will further grow. Because of the effect a larger area must be drained off and water has to be raised higher as the Netherlands will sink in relation to the North Sea.


Author(s):  
Alexander J.P. Houben ◽  
Geert-Jan Vis

Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.


2015 ◽  
Vol 282 (1806) ◽  
pp. 20150211 ◽  
Author(s):  
Gert Stulp ◽  
Louise Barrett ◽  
Felix C. Tropf ◽  
Melinda Mills

The Dutch are the tallest people on earth. Over the last 200 years, they have grown 20 cm in height: a rapid rate of increase that points to environmental causes. This secular trend in height is echoed across all Western populations, but came to an end, or at least levelled off, much earlier than in The Netherlands. One possibility, then, is that natural selection acted congruently with these environmentally induced changes to further promote tall stature among the people of the lowlands. Using data from the LifeLines study, which follows a large sample of the population of the north of The Netherlands ( n = 94 516), we examined how height was related to measures of reproductive success (as a proxy for fitness). Across three decades (1935–1967), height was consistently related to reproductive output (number of children born and number of surviving children), favouring taller men and average height women. This was despite a later age at first birth for taller individuals. Furthermore, even in this low-mortality population, taller women experienced higher child survival, which contributed positively to their increased reproductive success. Thus, natural selection in addition to good environmental conditions may help explain why the Dutch are so tall.


2016 ◽  
Vol 95 (3) ◽  
pp. 253-268 ◽  
Author(s):  
Hanneke Verweij ◽  
Geert-Jan Vis ◽  
Elke Imberechts

AbstractThe spatial distribution of porosity and permeability of the Rupel Clay Member is of key importance to evaluate the spatial variation of its sealing capacity and groundwater flow condition. There are only a limited number of measured porosity and permeability data of the Rupel Clay Member in the onshore Netherlands and these data are restricted to shallow depths in the order of tens of metres below surface. Grain sizes measured by laser diffraction and SediGraph® in samples of the Rupel Clay Member taken from boreholes spread across the country were used to generate new porosity and permeability data for the Rupel Clay Member located at greater burial depth. Effective stress and clay content are important parameters in the applied grain-size based calculations of porosity and permeability.The calculation method was first tested on measured data of the Belgian Boom Clay. The test results showed good agreement between calculated permeability and measured hydraulic conductivity for depths exceeding 200m.The spatial variation in lithology, heterogeneity and also burial depth of the Rupel Clay Member in the Netherlands are apparent in the variation of the calculated permeability. The samples from the north of the country consist almost entirely of muds and as a consequence show little lithology-related variation in permeability. The vertical variation in permeability in the more heterogeneous Rupel Clay Member in the southern and east-southeastern part of the country can reach several orders of magnitude due to increased permeability of the coarser-grained layers.


2017 ◽  
Vol 27 (4) ◽  
pp. 279-286 ◽  
Author(s):  
Anita Romijn ◽  
Pim W Teunissen ◽  
Martine C de Bruijne ◽  
Cordula Wagner ◽  
Christianne J M de Groot

BackgroundIn an obstetrical team, obstetricians, midwives and nurses work together in a dynamic and complex care setting. Different professional cultures can be a barrier for effective interprofessional collaboration. Although the different professional cultures in obstetrical care are well known, little is understood about discrepancies in mutual perceptions of collaboration. Similar perceptions of collaboration are important to ensure patient safety. We aimed to understand how different care professionals in an obstetrical team assess interprofessional collaboration in order to gain insight into the extent to which their perceptions are aligned.MethodsThis cross-sectional study was performed in the north-western region of the Netherlands. Care professionals from five hospitals and surrounding primary-care midwifery practices were surveyed. The respondents consisted of four groups of care professionals: obstetricians (n=74), hospital-based midwives known as clinical midwives (n=42), nurses (n=154) and primary-care midwives (n=109). The overall response rate was 80.8%. We used the Interprofessional Collaboration Measurement Scale (IPCMS) to assess perceived interprofessional collaboration. The IPCMS distinguishes three subscales: communication, accommodation and isolation. Data were analysed using non-parametrical tests.ResultsOverall, ratings of interprofessional collaboration were good. Obstetricians rated their collaboration with clinical midwives, nurses and primary-care midwives more positively than these three groups rated the collaboration with obstetricians. Discrepancies in mutual perceptions were most apparent in the isolation subscale, which is about sharing opinions, discussing new practices and respecting each other.ConclusionWe found relevant discrepancies in mutual perceptions of collaboration in obstetrical care in the Netherlands. Obstetrical care is currently being reorganised to enable more integrated care, which will have consequences for interprofessional collaboration. The findings of this study indicate opportunities for improvement especially in terms of perceived isolation.


2016 ◽  
Vol 13 ◽  
pp. 151-161 ◽  
Author(s):  
Michael Borsche ◽  
Andrea K. Kaiser-Weiss ◽  
Frank Kaspar

Abstract. Hourly and monthly mean wind speed and wind speed variability from the regional reanalysis COSMO-REA6 is analysed in the range of 10 to 116 m height above ground. Comparisons with independent wind mast measurements performed between 2001 and 2010 over Northern Germany over land (Lindenberg), the North Sea (FINO platforms), and The Netherlands (Cabauw) show that the COSMO-REA6 wind fields are realistic and at least as close to the measurements as the global atmospheric reanalyses (ERA20C and ERA-Interim) on the monthly scale. The median wind profiles of the reanalyses were found to be consistent with the observed ones. The mean annual cycles of variability are generally reproduced from 10 up to 116 m in the investigated reanalyses. The mean diurnal cycle is represented qualitatively near the ground by the reanalyses. At 100 m height, there is little diurnal cycle left in the global and regional reanalyses, though a diurnal cycle is still present in the measurements over land. Correlation coefficients between monthly means of the observations and the reanalyses range between 0.92 at 10 m and 0.99 at 116 m, with a slightly higher correlation of the regional reanalyses at Lindenberg at 10 m height which is significant only at a lower than 95 % significance level. Correlations of daily means tend to be higher for the regional reanalysis COSMO-REA6. Increasing temporal resolution further, reduces this advantage of the regional reanalysis. At around 100 m, ERA-Interim yields a higher correlation at Lindenberg and Cabauw, whereas COSMO-REA6 yields a higher correlation at FINO1 and FINO2.


2021 ◽  
pp. 39-82
Author(s):  
Arika Okrent ◽  
Sean O’Neill

This chapter tells the story of how English got to be the weird way it is, which begins with the Germanic languages and the barbarians who spoke them. During the 5th century, an assortment of them poured across the North Sea, from what is today Denmark, the Netherlands, and Northern Germany, and conquered most of England. After about a century of the Germanic tribes taking over and settling in, the Romans returned. This time it was not soldiers but missionaries who arrived. The monks who came to convert the island to Christianity brought their Latin language with them, and they also brought the Latin alphabet. They set about translating religious texts into the language of the people they encountered, a language that by this time had coalesced into something that was Old English. However, there is another group of barbarians to blame: the Vikings. Their language was similar enough to Old English that they could communicate with the Anglo-Saxons without too much difficulty, and over time their own way of speaking mixed into the surrounding language, leaving vocabulary and expressions behind that do not quite fit the rest of the pattern at the old Germanic layer.


Author(s):  
Cheryl Colopy

From a remote outpost of global warming, a summons crackles over a two-way radio several times a week: . . . Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! Kathmandu, Tsho Rolpa! Babar Mahal, Tsho Rolpa! . . . In a little brick building on the lip of a frigid gray lake fifteen thousand feet above sea level, Ram Bahadur Khadka tries to rouse someone at Nepal’s Department of Hydrology and Meteorology in the Babar Mahal district of Kathmandu far below. When he finally succeeds and a voice crackles back to him, he reads off a series of measurements: lake levels, amounts of precipitation. A father and a farmer, Ram Bahadur is up here at this frigid outpost because the world is getting warmer. He and two colleagues rotate duty; usually two of them live here at any given time, in unkempt bachelor quarters near the roof of the world. Mount Everest is three valleys to the east, only about twenty miles as the crow flies. The Tibetan plateau is just over the mountains to the north. The men stay for four months at a stretch before walking down several days to reach a road and board a bus to go home and visit their families. For the past six years each has received five thousand rupees per month from the government—about $70—for his labors. The cold, murky lake some fifty yards away from the post used to be solid ice. Called Tsho Rolpa, it’s at the bottom of the Trakarding Glacier on the border between Tibet and Nepal. The Trakarding has been receding since at least 1960, leaving the lake at its foot. It’s retreating about 200 feet each year. Tsho Rolpa was once just a pond atop the glacier. Now it’s half a kilometer wide and three and a half kilometers long; upward of a hundred million cubic meters of icy water are trapped behind a heap of rock the glacier deposited as it flowed down and then retreated. The Netherlands helped Nepal carve out a trench through that heap of rock to allow some of the lake’s water to drain into the Rolwaling River.


Sign in / Sign up

Export Citation Format

Share Document