scholarly journals 2180

2017 ◽  
Vol 1 (S1) ◽  
pp. 58-58
Author(s):  
Marisa Hornbaker ◽  
Miguel Gallardo ◽  
Xiaorui Zhang ◽  
Huaxian Ma ◽  
Peter Hu ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Acute myeloid leukemia (AML) is a devastating hematologic malignancy wherein <20% of patients will survive 5 years after diagnosis. In an effort to understand alterations that drive AML development and progression, The Cancer Genome Atlas detailed the most common recurrent mutations. One gene of interest identified here was HNRNPK, supporting our clinical observations that suggest altered expression levels of HNRNPK and its corresponding protein (hnRNP K) may impact AML. Here, we aim to elucidate the impact of hnRNP K overexpression in AML by utilizing AML cell lines and mouse models reflective of the human disease. METHODS/STUDY POPULATION: We utilized fluorescence in situ hybridization (FISH), qRT-PCR, and reverse phase protein array (RPPA) to evaluate HNRNPK copy number and expression levels in AML patient samples compared with CD34+ cells from healthy human donor bone marrow. Kaplan-Meier survival analyses were performed using clinical data from 415 AML patients at MD Anderson Cancer Center and stratified based on hnRNP K protein expression as evaluated by RPPA. To directly evaluate the impact of hnRNP K overexpression in vivo, we created 2 distinct lines of Hnrnpk transgenic mice (HnrnpkTg). Phenotypic differences in the hematologic compartments of these mice were evaluated via flow cytometry, immunohistochemistry, and transplantation assays. Molecular pathways have been evaluated in mice and cell lines using immunoblotting, qRT-PCR, and RNA-immunoprecipitation. The drug JQ1 was used in vitro with both OCI-AML3 cell lines and with primary bone marrow and splenocytes from HnrnpkTg mice. RESULTS/ANTICIPATED RESULTS: FISH analyses demonstrated that a large proportion of AML cases had amplification of HNRNPK that corresponded with upregulation of HNRNPK at the RNA and protein levels. Indeed, patients with high levels of hnRNP K had decreased overall survival compared with those expressing lower hnRNP K levels. In line with these clinical observations, we observed altered myelopoiesis in HnrnpkTg mice. These mice demonstrate increased CD11b+Gr1+ populations in the bone marrow and peripheral blood. Indeed, these mice develop myeloid leukemia, indicated by >20% of circulating white blood cells harboring markers of immature stem cells in conjunction with positive myeloperoxidase staining and blast-appearing morphology. RPPA revealed expression of c-Myc positively correlated with increased hnRNP K levels. In HnrnpkTg mice, c-Myc protein was increased, yet MYC RNA was invariably decreased compared to wildtype. To decipher a mechanism by which this may occur, we demonstrated a post-transcriptional interaction between hnRNP K and c-Myc in vivo. JQ1, a BRD4 inhibitor, that epigenetically decreases c-Myc expression showed preferential activity against myeloid cells expressing high levels of hnRNP K both in vitro and in vivo. DISCUSSION/SIGNIFICANCE OF IMPACT: These preliminary studies demonstrate that hnRNP K overexpression causes myeloid malignancies in both mouse and man. We have determined that c-Myc contributes in part to hnRNP K-mediated leukemogenesis, and that targeting c-Myc may be an effective strategy for hnRNP K-overexpressing AML. We are currently validating other potential targets for interaction with hnRNP K by performing RNA-Seq and hnRNP K immunoprecipitation followed by mass spectrometry. Fortunately, several of our putative targets are druggable—allowing for viable translational outputs to these mechanistic studies.

2020 ◽  
Author(s):  
Yao Jianning ◽  
Wang Chunfeng ◽  
Dong Xuyang ◽  
Zhang Yanzhen ◽  
Li Yanle ◽  
...  

Abstract Background: Long non-coding RNA (lncRNA) termed small nucleolar RNA host gene 22 (SNHG22) has been reported as a crucial regulator in several types of human cancers. In this study, we aimed to evaluate the function and mechanism of SNHG22 in colorectal cancer (CRC) progression. Methods: Quantitative RT-PCR (qRT-PCR) was used to detect the expression of SNHG22 in adenoma, tumor tissues (TTs), and adjacent nontumorous tissues (ANTs). The biological behaviors of SNHG22 in CRC cell lines were explored both in vitro (CCK-8 assay, flow cytometry, wound scratch, and transwell assays) and in vivo (nude mouse xenograft model). The interaction between SNHG22 and miR-128-3p, and the target genes of miR-128-3p were explored by online tools, qRT-PCR, western blot, and dual-luciferase reporter assay. Results: SNHG22 expression was gradually upregulated in ANTs, adenoma, and TTs. High expression levels of SNHG22 were significantly related to advanced clinicopathological factors and worse survival in patients with CRC. SNHG22 knockdown markedly prohibited CRC cell proliferation, migration, and invasion; and drove cell apoptosis in vitro; and hindered tumor growth in vivo. Mechanistic investigation showed that SNHG22 could bind to microRNA-128-3p (miR-128-3p) and attenuate its inhibitory effects on the expression levels and activity of E2F3. Rescue experiments exhibited that miR-128-3p inhibition or E2F3 upregulation can offset the functions of SNHG22 knockdown in CRC cells. Conclusion: Our findings support the existence of an interactive regulatory network of SNHG22, miR-128-3p, and E2F3 in CRC cell lines, indicating that the SNHG22/miR-128-3p/E2F3 axis is a novel diagnostic and therapeutic target in CRC.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3462-3462
Author(s):  
Xi Jiang ◽  
Hao Huang ◽  
Zejuan Li ◽  
Yuanyuan Li ◽  
Ping Chen ◽  
...  

Abstract Abstract 3462 Acute myeloid leukemia (AML) bearing MLL (mixed lineage leukemia) translocations are associated with poor survival, and only fewer than 50% of the patients survive longer than 5 years. Thus, an improved strategy leading to a higher cure rate is urgently needed to treat MLL-associated AML. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been postulated to be important gene expression regulators in all biology including human leukemia. Through large-scale, genome-wide miRNA expression profiling assays, we determined that miR-495 is significantly down-regulated in the majority of human AML samples, particularly, in those with MLL rearrangements. More interestingly, through correlating the expression signature of miR-495 with clinical outcome of AML patients, we revealed that a low expression level of miR-495 is a predictor of poor prognosis in most AML patients. Our further qPCR assays confirmed that the expression of miR-495 is even more significantly downregulated in MLL-rearranged AML primary patient samples and cell lines. Through in vitro colony-forming/replating assays and in vivo bone marrow transplantation studies, we found that forced expression of miR-495 significantly inhibits the capacity of the MLL-AF9 fusion gene to support colony formation in mouse bone marrow progenitor cells in vitro and to induce leukemia in vivo. In leukemia cell lines, overexpression of miR-495 greatly inhibits the viability of the cells, while increasing apoptosis. Furthermore, by using 3 algorithms for miR-495 3'UTR binding sites, we identified several well-known MLL leukemia-related genes, e. g. BMI1, MEF2C, BID and MEIS1, as potential targets of miR-495. Results of qPCR revealed that forced expression of miR-495 significantly inhibits the expression levels of these genes in leukemia cell lines, mouse bone marrow progenitor cells, as well as mouse peripheral blood cells with MLL fusion genes. Therefore we hypothesize that miR-495 may function as a tumor suppressor in AML with MLL rearrangements by targeting essential tumor-related genes. Further studies will focus on: 1) effects of miR-495 on the functions of target genes studied in vitro and in vivo; 2) the epigenetic mechanisms and the signaling pathways involved in regulating the expression level of miR-495 in human leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3767-3767
Author(s):  
Christian Recher ◽  
Marion David ◽  
Philippe de Medina ◽  
Cécile Bize ◽  
Nizar Serhan ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is the most common type of leukemia in adults. Despite intensive research, current treatments remain unsatisfactory with only 40% of younger (<60 years) and less than 10% of older (>60 years) AML patients achieving long-term complete remission. Consequently, drugs with novel mechanism of action are urgently needed to improve the outcome of these patients. We have recently identified Dendrogenin A (DDA) as a cholesterol metabolite present in normal cells but undetectable in various cancer cell lines including AML (de Medina et al, Nat Commun, 2013). DDA, the first steroidal alkaloid identified in mammals, exhibited strong anticancer effects against different tumor models in vitro and in vivo. In this study, we investigated the antileukemic potency of DDA in AML. We demonstrated that DDA exerts potent cytotoxic effect in a large panel of AML cell lines and cytogenetically and molecularly diverse primary AML patient samples (n=50) with a median IC50 of 3.3 µM (range 1.2-10 µM). We determined that DDA triggers both apoptosis and cytotoxic autophagy on AML cells. Macroautophagy was characterized by the accumulation of autophagic vacuoles and the stimulation of autophagic flux. As opposed to conventional chemotherapies, the antileukemic effect of DDA was similarly efficient in both immature stem/progenitor CD34+CD38-CD123+ subpopulation and leukemic bulk. Interestingly, the antileukemic activity of DDA on AML patient samples was not correlated to usual prognostic factors such as adverse cytogenetic risk karyotype, clonogenic ability, white blood cells count and FLT3-ITD or NPM status. Pharmacokinetic studies revealed that both per os (PO) and intraperitoneal (IP) administration led to a good absorption with calculated bioavailability of 74% (PO) and 48% (IP), showing that these modes of administration are relevant to in vivo preclinical studies. We then examined the in vivo anti-leukemic efficacy of DDA in NOD/SCID mice injected subcutaneously with HL60 and KG1 cells. We demonstrated that daily administration of DDA (20 mg/kg IP or 40 mg/kg PO) significantly reduced KG1 and HL60 tumor growth. Immunohistochemical analysis revealed that AML xenografts from mice exposed to DDA display a 3.5 fold increase of LC3 punctated cells and a decreased P62 level highlighting that DDA induces autophagy in vivo. Furthermore, DDA significantly kills AML cells in bone marrow and brain (55±5.6% reduction of viable CD45+ cells), and strongly reduces (57±7.8%) the total cell tumor burden in bone marrow and spleen in established disease models (eg. orthotopically engraftment of HL60 cells and three primary AML patient cells via tail vein injection in NOD/SCID/IL2Rγc-deficient mice). In addition, we showed that DDA is well tolerated in mice at effective dose and spares normal hematopoietic stem/progenitor cells from healthy donor. Mechanistic studies revealed that DDA is a natural modulator of the Liver X Receptor (LXR), a nuclear receptor involved in cholesterol homeostasis, immunity and proliferation. We found that the silencing of LXRβ gene prevents the capacity of DDA to trigger both cell death and autophagy on AML cells in vitro. In addition, DDA failed to block tumor development and to trigger autophagy on LXRβ-invalidated KG1 cells xenografted on NOD/SCID mice. Moreover, DDA strongly stimulates the expression of the myeloid leukemogenesis tumor suppressors Nur77 and Nor1 through an LXRβ-dependent mechanism. Interestingly, DDA triggers the relocation of Nur77 to the mitochondria, a process associated with both apoptosis and autophagic cell death. This study provides a strong rationale to bring DDA in clinical trials for patients with AML. Disclosures de Medina: Affichem: Employment. Bize:Affichem: Employment. Paillasse:Affichem: Employment. Noguer:Affichem: Employment. Sarry:Affichem: Equity Ownership. Silvente-Poirot:Affichem: Equity Ownership. Poirot:Affichem: Equity Ownership.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3723-3734 ◽  
Author(s):  
Ellen Weisberg ◽  
Lolita Banerji ◽  
Renee D. Wright ◽  
Rosemary Barrett ◽  
Arghya Ray ◽  
...  

AbstractMediators of PI3K/AKT signaling have been implicated in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Studies have shown that inhibitors of PI3K/AKT signaling, such as wortmannin and LY294002, are able to inhibit CML and AML cell proliferation and synergize with targeted tyrosine kinase inhi-bitors. We investigated the ability of BAG956, a dual PI3K/PDK-1 inhibitor, to be used in combination with inhibitors of BCR-ABL and mutant FLT3, as well as with the mTOR inhibitor, rapamycin, and the rapamycin derivative, RAD001. BAG956 was shown to block AKT phosphorylation induced by BCR-ABL–, and induce apoptosis of BCR-ABL–expressing cell lines and patient bone marrow cells at concentrations that also inhibit PI3K signaling. Enhancement of the inhibitory effects of the tyrosine kinase inhibitors, imatinib and nilotinib, by BAG956 was demonstrated against BCR-ABL expressing cells both in vitro and in vivo. We have also shown that BAG956 is effective against mutant FLT3-expressing cell lines and AML patient bone marrow cells. Enhancement of the inhibitory effects of the tyrosine kinase inhibitor, PKC412, by BAG956 was demonstrated against mutant FLT3-expressing cells. Finally, BAG956 and rapamycin/RAD001 were shown to combine in a nonantagonistic fashion against BCR-ABL– and mutant FLT3-expressing cells both in vitro and in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3910-3910
Author(s):  
Chao Shen ◽  
Yue Sheng ◽  
Rui Su ◽  
Xiaolan Deng ◽  
Sean Robinson ◽  
...  

Abstract N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic messenger RNAs (mRNAs) has been shown to play important roles in diverse cellular and pathological processes (Deng X, et al. Cell Res. 2018;28:507-517). ALKBH5, recently identified as a m6A demethylase, was reported to promote tumorigenesis and proliferation in glioblastoma stem-like cells (GSCs) (Zhang, S. et al. Cancer Cell. 2017;31:591-606) and breast cancer stem cells (BCSCs) (Zhang, C et al. PNAS. 2016;113: E2047-E2056). While ALKBH5 is well-recognized to function as an oncogene in solid tumors, it was reported that shallow/deep deletion of ALKBH5 is associated poor prognosis in patients with acute myeloid leukemia (AML), and is frequently co-existing with TP53 mutation (Kwok, C. T et al. J Hematol Oncol. 2017; 10(1): 39), implying that ALKBH5 may function as a tumor suppressor in AML. Thus, a systematic investigation of the definitive role of ALKBH5 in AML is warranted. To this end, we performed series of in vitro and in vivo experiments to determine the function of ALKBH5 in AML. For the in vitro experiments, we used three lentiviral shRNAs (shALKBH5-A, shALKBH5-D and shALKBH5-E) to deplete ALKBH5 expression in three human AML cell lines with different TP53 mutation status: NOMO-1 (TP53-mutant), MV4;11 (TP53-WT) and MA9.3 cells (TP53-WT). Somewhat surprisingly, ALKBH5 depletion significantly (p<0.05) inhibited AML cell proliferation/growth in all three AML cells lines, regardless of the status of TP53 mutation. We next conducted colony forming assays and found that ALKBH5 knockdown significantly (p<0.01) impaired the colony forming ability to 18% ~45% of the control group level in all three AML cell lines. We further showed that ALKBH5 depletion caused a significant increase in apoptosis (with a 1.5 ~ 4 fold increase; p<0.001) in all three AML cell lines, which is consistent with the previous report that knockout of ALKBH5 caused severe apoptosis of mouse testis cells (Zheng G et al. Mol Cell. 2013; 49:18-29). In contrast, ALKBH5 knockdown did not significantly affect cell cycles. To further confirm ALKBH5's role in AML development in vivo. We utilized Xenografted AML model as well as mouse bone marrow transplantation (BMT) model. Consistent with the in vitro results, we found that NSGS mice xeno-transplanted with MV4;11-ALKBH5-knockdown cells survived significantly longer than those with MV4;11 control cells (p<0.001). Moreover, we have also conducted mouse bone marrow transplantation (BMT) assays with MLL-AF9-transduced mouse bone marrow lineage negative (Lin-) progenitor cells collected from mice carrying Alkbh5 wild-type (Alkbh5+/+), or heterozygous (Alkbh5+/-) or homozygous (Alkbh5-/-) deletion. Consistent with the xeno-transplanted mouse model results, our BMT assays also showed that Alkbh5 depletion significantly inhibited leukemogenesis and prolonged survival in BMT recipient mice (median survival of ALKBH5wt/wt +MA9 vs. ALKBH5+/- +MA9 or ALKBH5-/- +MA9: 32 days vs. 64 days or 68 days; p<0.005). Taken together, our in vitro and in vivo functional studies data indicate ALKBH5 also functions as an oncogene in AML regardless of TP53 mutation status, similar to its role in solid tumors. We are currently conducting as series of studies to reveal the molecular mechanism(s) underlying the oncogenic role of ALKBH5 in AML. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Jing Yuan ◽  
Xiaoyan Jiang ◽  
Hua Lan ◽  
Xiaoyu Zhang ◽  
Tianyi Ding ◽  
...  

Recent studies have reported that T-cell differentiation protein 2 (MAL2) is an important regulator in cancers. Here, we downloaded data from multiple databases to analyze MAL2 expression and function in pan-cancers, especially in ovarian cancer (OC). Gene Expression Profiling Interactive Analysis (GEPIA) databases was used to examine MAL2 expression in 13 types of cancer. Kaplan–Meier plotter database was used to analyze the overall survival rate of MAL2 in pan-cancers. The Catalog of Somatic Mutations in Cancer (COSMIC), cBioPortal, and UCSC databases were used to examine MAL2 mutation in human cancers. Metascape, STRING, and GeneMANIA websites were used to explore MAL2 function in OC. Furthermore, ggplot2 package and ROC package were performed to analyze hub gene expression and undertake receiver operating characteristic (ROC) analysis. Drug sensitivity of MAL2 in OC was examined by the GSCALite database. In order to verify the results from databases above, real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting were conducted to detect the expression of MAL2 in OC cells. CRISPR/Cas9 system was used to knockout the MAL2 gene in the OC cell lines HO8910 and OVCAR3, using specific guide RNA targeting the exons of MAL2. Then, we performed proliferation, colony formation, migration, and invasion assays to investigate the impact of MAL2 in OC cell lines in vivo and in vitro. Epithelial-mesenchymal transition (EMT)-associated biomarkers were significantly altered in vitro via western blotting and qRT-PCR. Taken together, we observed that MAL2 was remarkably dysregulated in multiple cancers and was related to patient overall survival (OS), mutation, and drug sensitivity. Furthermore, experimental results showed that MAL2 deletion negatively regulated the proliferation, migration, invasion, and EMT of OC, indicating that MAL2 is a novel oncogene that can activate EMT, significantly promote both the proliferation and migration of OC in vitro and in vivo, and provide new clues for treatment strategies.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


Author(s):  
Yudi Miao ◽  
Behnam Mahdavi ◽  
Mohammad Zangeneh

IntroductionThe present study investigated the anti-acute myeloid leukemia effects of Ziziphora clinopodides Lam leaf aqueous extract conjugated cadmium nanoparticles.Material and methodsTo synthesize CdNPs, Z. clinopodides aqueous extract was mixed with Cd(NO3)2 .4H2O. The characterization of the biosynthesized cadmium nanoparticles was carried out using many various techniques such as UV-Vis. and FT-IR spectroscopy, XRD, FE-SEM, and EDS.ResultsThe uniform spherical morphology of NPs was proved by FE-SEM images with NPs the average size of 26.78cnm. For investigating the antioxidant properties of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, the DPPH test was used. The cadmium nanoparticles inhibited half of the DPPH molecules in a concentration of 196 µg/mL. To survey the cytotoxicity and anti-acute myeloid leukemia effects of Cd(NO3)2, Z. clinopodides, CdNPs, and Daunorubicin, MTT assay was used on the human acute myeloid leukemia cell lines i.e., Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr. The IC50 of the cadmium nanoparticles was 168, 205, and 210 µg/mL against Murine C1498, 32D-FLT3-ITD, and Human HL-60/vcr cell lines, respectively. In the part of in vivo study, DMBA was used for inducing acute myeloid leukemia in mice. CdNPs similar to daunorubicin ameliorated significantly (p≤0.01) the biochemical, inflammatory, RBC, WBC, platelet, stereological, histopathological, and cellular-molecular parameters compared to the other groups.ConclusionsAs mentioned, the cadmium nanoparticles had significant anti-acute myeloid leukemia effects. After approving the above results in the clinical trial studies, these cadmium nanoparticles can be used as a chemotherapeutic drug to treat acute myeloid leukemia in humans.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


2020 ◽  
Author(s):  
Ben Yang ◽  
Wang Ke ◽  
Yingchun Wan ◽  
Tao Li

Abstract Background Endometrial cancer (EC) is one of the most frequent gynecological malignancy worldwide. However, resistance to chemotherapy remains one of the major difficulties in the treatment of EC. Thus, there is an urgent requirement to understand mechanisms of chemoresistance and identify novel regimens for patients with EC. Methods Cisplatin and doxorubicin resistant cell lines were acquired by continuous exposing parental EC cells to cisplatin or doxorubicin for 3 months. Cell viability was determined by using MTT assay. Protein Expression levels of protein were examined by western blotting assay. mRNA levels were measured by quantitative polymerase chain reaction (qPCR) assay. Ring finger protein 8 (RNF8) knockout cell lines were generated by clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 gene editing assay. Nonhomologous end joining (NHEJ) efficiency were quantified by plasmid based NHEJ assay. DNA double strand breaks (DSB) were generated using laser micro-irradiation. Protein recruitment to DSB was analyzed by immunofluorescent assay. Tumor growth was examined by AN3CA xenograft mice model. Results We found that protein and mRNA expression levels of RNF8 were significantly increased in both cisplatin and doxorubicin resistant EC cells. Cell survival assay showed that RNF deficiency significantly enhanced the sensitivity of resistant EC cells to cisplatin and doxorubicin (P < 0.01). In addition, chemoresistant EC cells exhibited increased NHEJ efficiency. Knockout of RNF8 in chemoresistant EC cells significantly reduced NHEJ efficiency and prolonged Ku80 retention on DSB. Moreover, cisplatin resistant AN3CA xenograft showed that RNF8 deficiency overcame cisplatin resistance. Conclusions Our in vitro and in vivo assays provide evidence for RNF8, which is a NHEJ factor, serving as a promising, novel target in EC chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document