scholarly journals 3502 Stimulating iNKT Cell-Mediated Neuroblastoma Cytotoxicity in a Mouse Model

2019 ◽  
Vol 3 (s1) ◽  
pp. 21-21
Author(s):  
Kevin Owen McNerney ◽  
Hamid Bassiri ◽  
Spyridon Karageorgos ◽  
Priya Khurana

OBJECTIVES/SPECIFIC AIMS: Overall Research Aim: To develop an iNKT-cell engaging reagent (“CAb”)to induce neuroblastoma-directed cytotoxicity in vitro and in a mouse model of neuroblastoma. Objective 1: Explore the contribution of different GD2 affinities to the cytotoxicity against neuroblastoma cells in vitro. Objective 2: Deteremine whether use of different stimulatory glycolipids (alpha-GalCer vs. C34) alter the activation and cytotoxicity of iNKT cells against neuroblastoma in vitro. Objective 3: To analyze survival of an immunocompetent mouse model of neuroblastoma treated with C34-loaded vs alpha-GalCer-loaded CAb molecule, and to analyze the tumor microenvironment in each treatment condition. METHODS/STUDY POPULATION: CAb molecule will be generated by fusing a CD1d protein to an scFv domain for GD2 using cloning techniques. Previous work by our group has used a streptavidin-biotin system to link CD1d to an antibody against GD2, which is large and immunogenic. Protein expression of this novel fusion protein will occur in HEK293 cells. This new CAb molecule will then be loaded with alpha-GalCer or C34 for use in cytotoxicity and in vivo experiments. Cytotoxicity Assessment: Chromium assays will be used to assess the specific cytotoxicity generated by iNKT cells against neuroblastoma cells in vitro. iNKT cells will be activated by “CAb’s” with relatively high and low affinity for GD2, and also with Alpha-GalCer and C34 glycolipid antigen. flow cytometry will be used to assess for CD107a and Interferon Gamma. Mouse Model of Neuroblastoma: TH-MYCN +/+ mice will be used as an immunocompetent model of neuroblastoma. These mice have the MYCN gene under the control of a tyrosine hydroxylase promoter, and spontaneously develop neuroblastomas by 2 weeks of life which are uniformly fatal by 8 weeks of life. In vivo survival studies will be conducted by injecting CAb of relatively high and low affinity, loaded with glycolipid antigen intraperitonealy into TH-MYCN+/+ mice starting at 2 weeks of age, twice weekly. There will also be a matched negative control. Treatment groups are listed below: 1. alpha-GalCer loaded high-affinity Cab 2. alpha-GalCer loaded low-affinity Cab 3. C34-loaded high-affinity Cab 4. C34-loaded low-affinity Cab 5. Unloaded high-affinity Cab 6. Unloaded low-affinity Cab Enrollment will be 6 mice per group for the survival curves. Tumor Microenvironment analysis: 2 additional mice will be included in each group listed above to be sacrificed 2 weeks into treatment for tumor assessment with flow cytomtetry for iNKT cell, NK cell, T-Lymphocyte frequencies as well as interferon-Gamma expression. RESULTS/ANTICIPATED RESULTS: Objective 1: We expect to find that the highest affinity scFv domains for GD2 result in the greatest amount of cytotoxicity against neuroblastoma cells via iNKT cells. Objective 2: We expect that the C34 molecule will induce the greatest amounts of iNKT cell activation against neuroblastoma cells and higher cytotoxicity against neuroblastoma, which has not been shown previously. Objective 3: We expect to see prolonged survival of mice treated with the high affinity GD2 CAb loaded with C34 or alpha GalCer compared with the low affinity CAb loaded with C34 or alpha GalCer. We also expect that the C34 loaded CAb in both groups will have prolonged survival when compared with the alpha-GalCer loaded CAbs of either affinity. DISCUSSION/SIGNIFICANCE OF IMPACT: iNKT cells have been shown previously to confer an improved prognosis in neuroblastoma and other malignancies. Furthermore, high risk neuroblastomas tend to downregulate expression of a chemokine that attracts iNKT’s to the site of the neuroblastoma. Directing iNKT to the site of neuroblastoma holds promise as an effective immunotherapy option. Our preliminary data demonstrate that CAbs directed against GD2 are capable of exerting cytotoxicity of neuroblastoma in vitro. Furthermore a trend towards prolonged survival has been shown in TH-MYCN mice in early experiments. The development of a novel antibody that has reduced immunogenicity, incorporates a glycolipid antigen that does not induce iNKT cell anergy, and is specific for the GD2 tumor specific antigen has potential to result in increased iNKT-mediate neuroblastoma cytotoxicity and prolonged survival in TH-MYCN+/+ mice.

Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 2993-3002 ◽  
Author(s):  
Pierre Milpied ◽  
Bérangère Massot ◽  
Amédée Renand ◽  
Séverine Diem ◽  
André Herbelin ◽  
...  

Abstract Despite increasing knowledge on the mechanisms of invariant natural killer T (iNKT)–cell development in the thymus, the function of recent thymic emigrant (RTE) iNKT cells remains largely unexplored, principally because of a lack of bona fide markers to distinguish RTE from long-lived iNKT cells. Whether the recently described IL-17–producing iNKT cell subset is part of RTE has notably not been addressed. In the present study, we show that neuropilin-1 (Nrp-1), a transmembrane receptor mainly found on T-regulatory (Treg) cells in the murine immune system, is specifically expressed on RTE iNKT cells in naive mice. We used the Nrp-1 marker to discriminate RTE from mature iNKT cells and compare their functions. We show that RTE iNKT cells proliferate more than mature iNKT cells after in vitro activation; that, unlike mature iNKT cells, most RTE iNKT cells fail to rapidly produce IFN-γ and IL-4 after in vivo activation; and, most importantly, that IL-17–producing iNKT cells in lymphoid organs of naive mice are contained within the RTE iNKT cell pool. Our results establish an accurate marker of RTE iNKT cells and reveal that continuous thymic output is required for pro-inflammatory IL-17 secretion, a key function of adult iNKT cells.


2019 ◽  
Vol 3 (5) ◽  
pp. 813-824 ◽  
Author(s):  
Rupali Das ◽  
Peng Guan ◽  
Susan J. Wiener ◽  
Nishant P. Patel ◽  
Trevor G. Gohl ◽  
...  

Abstract Invariant natural killer T (iNKT) cells comprise a unique lineage of CD1d-restricted lipid-reactive T lymphocytes that potently kill tumor cells and exhibit robust immunostimulatory functions. Optimal tumor-directed iNKT cell responses often require expression of the antigen-presenting molecule CD1d on tumors; however, many tumor cells downregulate CD1d and thus evade iNKT cell recognition. We generated a soluble bispecific fusion protein designed to direct iNKT cells to the site of B-cell cancers in a tumor antigen-specific but CD1d-independent manner. This fusion protein is composed of a human CD1d molecule joined to a single chain antibody FV fragment specific for CD19, an antigen widely expressed on B-cell cancers. The CD1d-CD19 fusion protein binds specifically to CD19-expressing, but not CD19-negative cells. Once loaded with the iNKT cell lipid agonist α-galactosyl ceramide (αGC), the CD1d-CD19 fusion induces robust in vitro activation of and cytokine production by human iNKT cells. iNKT cells stimulated by the αGC-loaded CD1d-CD19 fusion also strongly transactivate T-, B-, and NK-cell responses and promote dendritic cell maturation. Importantly, the αGC-loaded fusion induces robust lysis of CD19+CD1d− Epstein-Barr virus immortalized human B-lymphoblastoid cell lines that are otherwise resistant to iNKT cell killing. Consistent with these findings; administration of the αGC-loaded fusion protein controlled the growth of CD19+CD1d− tumors in vivo, suggesting that it can “link” iNKT cells and CD19+CD1d− targets in a therapeutically beneficial manner. Taken together, these preclinical studies demonstrate that this B cell–directed fusion protein can be used to effectively induce iNKT cell antitumor responses in vitro and in vivo.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Roman Covarrubias ◽  
Amy S Major

Invariant Natural Killer T (iNKT) cells are specialized lymphocytes that when activated can regulate chronic inflammatory conditions and atherosclerotic processes. The activation of iNKT cells occurs when glycolipid antigens bind the MHC class-I like molecule CD1d present on antigen presenting cells (APCs). The pathways by which glycolipid antigens target CD1d for presentation and activation of iNKT cells remain unclear, yet the expression of surface receptors associated with lipid homeostasis, such as the LDL receptor (LDLr), have been implicated in the modulation of iNKT cell activation. The LDLr has been shown to modulate this process by binding apoE-containing lipoproteins, which can carry antigenic glycolipids for iNKT cell activation. The LDL receptor-related protein (LRP), a transmembrane receptor from the LDL receptor family of proteins, shares structural homology with LDLr and can bind a number of ligands including apoE-containing lipoproteins. We hypothesized that LRP can play an active role in glycolipid antigen presentation and subsequent activation of iNKT cells. Here, we demonstrate that LRP is preferentially expressed at high levels on F4/80 + macrophages, when compared to other APCs. We also show that a specialized subset of macrophages expressing CD169, known for their ability to present glycolipid antigen to iNKT cells, have increased levels of LRP when compared to CD169 - macrophages. Using mice with a targeted deletion of LRP in macrophages, we observed decreased activation of iNKT cells in vitro (24, 48 hours) and normal IFN-gamma but blunted IL-4 response in vivo. Further flow cytometric analysis showed normal surface expression of CD1d in LRP-cKO macrophages as well as normal uptake of fluorescently labeled glycolipid in vitro . Additionally, analysis of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages of iNKT cells and no homeostatic disruption as evidenced by absence of programmed death-1 and LY-49. Collectively, these data suggest that macrophage LRP contributes to early iNKT cell activation by enhancing early IL-4 responses.


2019 ◽  
Vol 3 (s1) ◽  
pp. 16-16
Author(s):  
Nina Steele ◽  
Valerie Irizarry-Negron ◽  
Veerin Sirihorachai ◽  
Samantha Kemp ◽  
Eileen Carpenter ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Pancreatic ductal adenocarcinoma (PDA) has a dismal 5-year survival rate of 9%, making this disease one of the deadliest human malignancies (https://seer.cancer.gov/). Primary barriers to the treatment of pancreatic cancer include extensive stromal interactions and sustained immune suppression. Aberrant Hedgehog (HH) pathway activity is a hallmark of pancreatic tumorigenesis. Tumor-derived HH ligands signal in a paracrine fashion to the surrounding stroma to influence tumor growth. Expression of HH ligands increases during PDA progression, and previous work has shown that genetic deletion of Sonic HH (Shh) from the epithelium of mice with pancreatic tumors results in increased Indian HH (Ihh) expression. This research aims to investigate the translational impact of changes in immune infiltration following deletion of IHH in a preclinical mouse model of pancreatic cancer. METHODS/STUDY POPULATION: Ihh was deleted in tumor cells lines (IhhKO) derived from a genetically engineered mouse model of pancreatic cancer (LSL-KrasG12D/+;LSL-TrpR270H;P48-Cre), using CRISPR/Cas-9 gene editing to assess the role of Ihh in the tumor microenvironment. The level of HH signaling was determined using tumor cell co-cultures with Gli1lacZ fibroblasts (derived from mice with a lacZ reporter allele knocked into the Gli1 locus), in which Beta Galactosidase activity serves as a readout for HH signaling. WT and IhhKO tumor cells were orthotopically transplanted into the pancreas of syngeneic C57BL/6 mice. Human pancreas samples were obtained from surgical resection of pancreatic adenocarcinoma, or fine needle biopsy procedure (FNB). Immune profiling of mouse and human pancreatic tumors was performed using Cytometry Time-of-Flight analysis (CyTOF), and tumor composition was analyzed by single-cell RNA sequencing (scRNA seq). In vitro cultures with pancreatic fibroblasts treated with either WT or IhhKO tumor cell conditioned media (CM) were cultured with bone-marrow derived macrophages to assess tumor crosstalk. RESULTS/ANTICIPATED RESULTS: Tumor cells lacking Ihh were generated through CRISPR/Cas-9 deletion, and this was confirmed by qRT-PCR. Co-culture of IhhKO tumor cells with Gli1lacZ fibroblasts results in decreased Gli1 expression both in vitro and in vivo. Immune profiling revealed that tumors lacking Ihh have significantly fewer tumor associated macrophages (CD11b+/F4/80+/CD206+), resulting in decreased presence of immunosuppressive factors such as arginase 1 and PDL1. Immune phenotyping of human pancreatic tissues revealed similar populations of immunosuppressive myeloid cells present in tumors. In vitro co-cultures demonstrated that, in the presence of bone-marrow derived macrophages, immunosuppressive IL-6 production was reduced in pancreatic fibroblasts cultured with IhhKO-CM, as compared to fibroblasts cultured with WT-CM, providing mechanistic insight into the in vivo phenotype observed. Further, scRNA seq analysis suggests that modulation of HH signaling in the tumor microenvironment alters chemokine and immunomodulatory signaling pathways driven by fibroblasts in the pancreatic tumor microenvironment. DISCUSSION/SIGNIFICANCE OF IMPACT: HH signaling in pancreatic fibroblasts contributes to the establishment of an immune suppressive environment in pancreatic cancer. Combining methods to target HH signaling and immune checkpoint therapy has translational potential in treating pancreatic cancer patients.


1990 ◽  
Vol 29 (03) ◽  
pp. 120-124
Author(s):  
R. P. Baum ◽  
E. Rohrbach ◽  
G. Hör ◽  
B. Kornhuber ◽  
E. Busse

The effect of triiodothyronine (T3) on the differentiation of cultured neuroblastoma (NB) cells was studied after 9 days of treatment with a dose of 10-4 M/106 cells per day. Using phase contrast microscopy, 30-50% of NB cells showed formation of neurites as a morphological sign of cellular differentiation. The initial rise of the mitosis rate was followed by a plateau. Changes in cyclic nucleotide content, in the triphosphates and in the activity of the enzyme ornithine decarboxylase (ODC) were assessed in 2 human and 2 murine cell lines to serve as biochemical parameters of the cell differentiation induced by T3. Whereas the cAMP level increased significantly (3 to 7 fold compared with its initial value), the cGMP value dropped to 30 to 50% of that of the control group. ATP and GTP increased about 200%, the ODC showed a decrease of about 50%. The present studies show a biphasic effect of T3 on neuroblastoma cells: the initial rise of mitotic activity is followed by increased cell differentiation starting from day 4 of the treatment.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2020 ◽  
Vol 27 (12) ◽  
pp. 699-710
Author(s):  
Irasema Mendieta ◽  
Gabriel Rodríguez-Gómez ◽  
Bertha Rueda-Zarazúa ◽  
Julia Rodríguez-Castelán ◽  
Winniberg Álvarez-León ◽  
...  

Neuroblastoma (NB) is the most common solid childhood tumor, and all-trans retinoic acid (ATRA) is used as a treatment to decrease minimal residual disease. Molecular iodine (I2) induces differentiation and/or apoptosis in several neoplastic cells through activation of PPARγ nuclear receptors. Here, we analyzed whether the coadministration of I2 and ATRA increases the efficacy of NB treatment. ATRA-sensitive (SH-SY5Y), partially-sensitive (SK-N-BE(2)), and non-sensitive (SK-N-AS) NB cells were used to analyze the effect of I2 and ATRA in vitro and in xenografts (Foxn1 nu/nu mice), exploring actions on cellular viability, differentiation, and molecular responses. In the SH-SY5Y cells, 200 μM I2 caused a 100-fold (0.01 µM) reduction in the antiproliferative dose of ATRA and promoted neurite extension and neural marker expression (tyrosine hydroxylase (TH) and tyrosine kinase receptor alpha (Trk-A)). In SK-N-AS, the I2 supplement sensitized these cells to 0.1 μM ATRA, increasing the ATRA-receptor (RARα) and PPARγ expression, and decreasing the Survivin expression. The I2 supplement increased the mitochondrial membrane potential in SK-N-AS suggesting the participation of mitochondrial-mediated mechanisms involved in the sensibilization to ATRA. In vivo, oral I2 supplementation (0.025%) synergized the antitumor effect of ATRA (1.5 mg/kg BW) and prevented side effects (body weight loss and diarrhea episodes). The immunohistochemical analysis showed that I2 supplementation decreased the intratumoral vasculature (CD34). We suggest that the I2 + ATRA combination should be studied in preclinical and clinical trials to evaluate its potential adjuvant effect in addition to conventional treatments.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


Sign in / Sign up

Export Citation Format

Share Document