scholarly journals Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017

2019 ◽  
Vol 41 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Lindsey M. Weiner-Lastinger ◽  
Sheila Abner ◽  
Jonathan R. Edwards ◽  
Alexander J. Kallen ◽  
Maria Karlsson ◽  
...  

AbstractObjective:Describe common pathogens and antimicrobial resistance patterns for healthcare-associated infections (HAIs) that occurred during 2015–2017 and were reported to the Centers for Disease Control and Prevention’s (CDC’s) National Healthcare Safety Network (NHSN).Methods:Data from central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), and surgical site infections (SSIs) were reported from acute-care hospitals, long-term acute-care hospitals, and inpatient rehabilitation facilities. This analysis included device-associated HAIs reported from adult location types, and SSIs among patients ≥18 years old. Percentages of pathogens with nonsusceptibility (%NS) to selected antimicrobials were calculated for each HAI type, location type, surgical category, and surgical wound closure technique.Results:Overall, 5,626 facilities performed adult HAI surveillance during this period, most of which were general acute-care hospitals with <200 beds. Escherichia coli (18%), Staphylococcus aureus (12%), and Klebsiella spp (9%) were the 3 most frequently reported pathogens. Pathogens varied by HAI and location type, with oncology units having a distinct pathogen distribution compared to other settings. The %NS for most pathogens was significantly higher among device-associated HAIs than SSIs. In addition, pathogens from long-term acute-care hospitals had a significantly higher %NS than those from general hospital wards.Conclusions:This report provides an updated national summary of pathogen distributions and antimicrobial resistance among select HAIs and pathogens, stratified by several factors. These data underscore the importance of tracking antimicrobial resistance, particularly in vulnerable populations such as long-term acute-care hospitals and intensive care units.

2019 ◽  
Vol 41 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Lindsey M. Weiner-Lastinger ◽  
Sheila Abner ◽  
Andrea L. Benin ◽  
Jonathan R. Edwards ◽  
Alexander J. Kallen ◽  
...  

AbstractObjective:To describe common pathogens and antimicrobial resistance patterns for healthcare-associated infections (HAIs) among pediatric patients that occurred in 2015–2017 and were reported to the Centers for Disease Control and Prevention’s National Healthcare Safety Network (NHSN).Methods:Antimicrobial resistance data were analyzed for pathogens implicated in central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated pneumonias (VAPs), and surgical site infections (SSIs). This analysis was restricted to device-associated HAIs reported from pediatric patient care locations and SSIs among patients <18 years old. Percentages of pathogens with nonsusceptibility (%NS) to selected antimicrobials were calculated by HAI type, location type, and surgical category.Results:Overall, 2,545 facilities performed surveillance of pediatric HAIs in the NHSN during this period. Staphylococcus aureus (15%), Escherichia coli (12%), and coagulase-negative staphylococci (12%) were the 3 most commonly reported pathogens associated with pediatric HAIs. Pathogens and the %NS varied by HAI type, location type, and/or surgical category. Among CLABSIs, the %NS was generally lowest in neonatal intensive care units and highest in pediatric oncology units. Staphylococcus spp were particularly common among orthopedic, neurosurgical, and cardiac SSIs; however, E. coli was more common in abdominal SSIs. Overall, antimicrobial nonsusceptibility was less prevalent in pediatric HAIs than in adult HAIs.Conclusion:This report provides an updated national summary of pathogen distributions and antimicrobial resistance patterns among pediatric HAIs. These data highlight the need for continued antimicrobial resistance tracking among pediatric patients and should encourage the pediatric healthcare community to use such data when establishing policies for infection prevention and antimicrobial stewardship.


2016 ◽  
Vol 37 (11) ◽  
pp. 1288-1301 ◽  
Author(s):  
Lindsey M. Weiner ◽  
Amy K. Webb ◽  
Brandi Limbago ◽  
Margaret A. Dudeck ◽  
Jean Patel ◽  
...  

OBJECTIVETo describe antimicrobial resistance patterns for healthcare-associated infections (HAIs) that occurred in 2011–2014 and were reported to the Centers for Disease Control and Prevention’s National Healthcare Safety Network.METHODSData from central line–associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonias, and surgical site infections were analyzed. These HAIs were reported from acute care hospitals, long-term acute care hospitals, and inpatient rehabilitation facilities. Pooled mean proportions of pathogens that tested resistant (or nonsusceptible) to selected antimicrobials were calculated by year and HAI type.RESULTSOverall, 4,515 hospitals reported that at least 1 HAI occurred in 2011–2014. There were 408,151 pathogens from 365,490 HAIs reported to the National Healthcare Safety Network, most of which were reported from acute care hospitals with greater than 200 beds. Fifteen pathogen groups accounted for 87% of reported pathogens; the most common included Escherichia coli (15%), Staphylococcus aureus (12%), Klebsiella species (8%), and coagulase-negative staphylococci (8%). In general, the proportion of isolates with common resistance phenotypes was higher among device-associated HAIs compared with surgical site infections. Although the percent resistance for most phenotypes was similar to earlier reports, an increase in the magnitude of the resistance percentages among E. coli pathogens was noted, especially related to fluoroquinolone resistance.CONCLUSIONThis report represents a national summary of antimicrobial resistance among select HAIs and phenotypes. The distribution of frequent pathogens and some resistance patterns appear to have changed from 2009–2010, highlighting the need for continual, careful monitoring of these data across the spectrum of HAI types.Infect Control Hosp Epidemiol 2016;1–14


2018 ◽  
Vol 23 (46) ◽  
Author(s):  
Carl Suetens ◽  
Katrien Latour ◽  
Tommi Kärki ◽  
Enrico Ricchizzi ◽  
Pete Kinross ◽  
...  

Point prevalence surveys of healthcare-associated infections (HAI) and antimicrobial use in the European Union and European Economic Area (EU/EEA) from 2016 to 2017 included 310,755 patients from 1,209 acute care hospitals (ACH) in 28 countries and 117,138 residents from 2,221 long-term care facilities (LTCF) in 23 countries. After national validation, we estimated that 6.5% (cumulative 95% confidence interval (cCI): 5.4–7.8%) patients in ACH and 3.9% (95% cCI: 2.4–6.0%) residents in LTCF had at least one HAI (country-weighted prevalence). On any given day, 98,166 patients (95% cCI: 81,022–117,484) in ACH and 129,940 (95% cCI: 79,570–197,625) residents in LTCF had an HAI. HAI episodes per year were estimated at 8.9 million (95% cCI: 4.6–15.6 million), including 4.5 million (95% cCI: 2.6–7.6 million) in ACH and 4.4 million (95% cCI: 2.0–8.0 million) in LTCF; 3.8 million (95% cCI: 3.1–4.5 million) patients acquired an HAI each year in ACH. Antimicrobial resistance (AMR) to selected AMR markers was 31.6% in ACH and 28.0% in LTCF. Our study confirmed a high annual number of HAI in healthcare facilities in the EU/EEA and indicated that AMR in HAI in LTCF may have reached the same level as in ACH.


2017 ◽  
Vol 39 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Jason G. Lake ◽  
Lindsey M. Weiner ◽  
Aaron M. Milstone ◽  
Lisa Saiman ◽  
Shelley S. Magill ◽  
...  

OBJECTIVETo describe pathogen distribution and antimicrobial resistance patterns for healthcare-associated infections (HAIs) reported to the National Healthcare Safety Network (NHSN) from pediatric locations during 2011–2014.METHODSDevice-associated infection data were analyzed for central line-associated bloodstream infection (CLABSI), catheter-associated urinary tract infections (CAUTI), ventilator-associated pneumonia (VAP), and surgical site infection (SSI). Pooled mean percentage resistance was calculated for a variety of pathogen-antimicrobial resistance pattern combinations and was stratified by location for device-associated infections (neonatal intensive care units [NICUs], pediatric intensive care units [PICUs], pediatric oncology and pediatric wards) and by surgery type for SSIs.RESULTSFrom 2011 to 2014, 1,003 hospitals reported 20,390 pediatric HAIs and 22,323 associated pathogens to the NHSN. Among all HAIs, the following pathogens accounted for more than 60% of those reported: Staphylococcus aureus (17%), coagulase-negative staphylococci (17%), Escherichia coli (11%), Klebsiella pneumoniae and/or oxytoca (9%), and Enterococcus faecalis (8%). Among device-associated infections, resistance was generally lower in NICUs than in other locations. For several pathogens, resistance was greater in pediatric wards than in PICUs. The proportion of organisms resistant to carbapenems was low overall but reached approximately 20% for Pseudomonas aeruginosa from CLABSIs and CAUTIs in some locations. Among SSIs, antimicrobial resistance patterns were similar across surgical procedure types for most pathogens.CONCLUSIONThis report is the first pediatric-specific description of antimicrobial resistance data reported to the NHSN. Reporting of pediatric-specific HAIs and antimicrobial resistance data will help identify priority targets for infection control and antimicrobial stewardship activities in facilities that provide care for children.Infect Control Hosp Epidemiol 2018;39:1–11


2008 ◽  
Vol 29 (11) ◽  
pp. 996-1011 ◽  
Author(s):  
Alicia I. Hidron ◽  
Jonathan R. Edwards ◽  
Jean Patel ◽  
Teresa C. Horan ◽  
Dawn M. Sievert ◽  
...  

Objective.To describe the frequency of selected antimicrobial resistance patterns among pathogens causing device-associated and procedure-associated healthcare-associated infections (HAIs) reported by hospitals in the National Healthcare Safety Network (NHSN).Methods.Data are included on HAIs (ie, central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonia, and surgical site infections) reported to the Patient Safety Component of the NHSN between January 2006 and October 2007. The results of antimicrobial susceptibility testing of up to 3 pathogenic isolates per HAI by a hospital were evaluated to define antimicrobial-resistance in the pathogenic isolates. The pooled mean proportions of pathogenic isolates interpreted as resistant to selected antimicrobial agents were calculated by type of HAI and overall. The incidence rates of specific device-associated infections were calculated for selected antimicrobial-resistant pathogens according to type of patient care area; the variability in the reported rates is described.Results.Overall, 463 hospitals reported 1 or more HAIs: 412 (89%) were general acute care hospitals, and 309 (67%) had 200-1,000 beds. There were 28,502 HAIs reported among 25,384 patients. The 10 most common pathogens (accounting for 84% of any HAIs) were coagulase-negative staphylococci (15%), Staphylococcus aureus (15%), Enterococcus species (12%), Candida species (11%), Escherichia coli (10%), Pseudomonas aeruginosa (8%), Klebsiella pneumoniae (6%), Enterobacter species (5%), Acinetobacter baumannii (3%), and Klebsiella oxytoca (2%). The pooled mean proportion of pathogenic isolates resistant to antimicrobial agents varied significantly across types of HAI for some pathogen-antimicrobial combinations. As many as 16% of all HAIs were associated with the following multidrug-resistant pathogens: methicillin-resistant S. aureus (8% of HAIs), vancomycin-resistant Enterococcus faecium (4%), carbapenem-resistant P. aeruginosa (2%), extended-spectrum cephalosporin-resistant K. pneumoniae (1%), extended-spectrum cephalosporin-resistant E. coli (0.5%), and carbapenem-resistant A. baumannii, K. pneumoniae, K. oxytoca, and E. coli (0.5%). Nationwide, the majority of units reported no HAIs due to these antimicrobial-resistant pathogens.


2012 ◽  
Vol 33 (10) ◽  
pp. 993-1000 ◽  
Author(s):  
Amit S. Chitnis ◽  
Jonathan R. Edwards ◽  
Phillip M. Ricks ◽  
Dawn M. Sievert ◽  
Scott K. Fridkin ◽  
...  

Objective.To evaluate national data on healthcare-associated infections (HAIs), device utilization, and antimicrobial resistance in long-term acute care hospitals (LTACHs).Design and Setting.Comparison of data from LTACHs and from medical and medical-surgical intensive care units (ICUs) in short-stay acute care hospitals reporting to the National Healthcare Safety Network (NHSN) during 2010.Methods.Rates of central line–associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), and ventilator-associated pneumonia (VAP) as well as device utilization ratios were calculated. For each HAI, pathogen profiles and antimicrobial resistance prevalence were evaluated. Comparisons were made using Poisson regression and the Mood median and x2 tests.Results.In 2010, 104 LTACHs reported CLABSIs and 57 reported CAUTIs and VAP to the NHSN. Median CLABSI rates in LTACHs (1.25 events per 1,000 device-days reported; range, 0.0-5.96) were comparable to rates in major teaching ICUs and were higher than those in other ICUs. CAUTI rates in LTACHs (median, 2.61; range, 0.0-9.92) were higher and VAP rates (median, 0.0; range, 0.0-3.29) were generally lower than those in ICUs. Central line utilization in LTACHs was higher than that in ICUs, whereas urinary catheter and ventilator utilization was lower. Methicillin resistance among Staphylococcus aureus CLABSIs (83%) and vancomycin resistance among Enterococcus faecalis CAUTIs (44%) were higher in LTACHs than in ICUs. Multidrug resistance among Pseudomonas aeruginosa CAUTIs (25%) was higher in LTACHs than in most ICUs.Conclusions.CLABSIs and CAUTIs associated with multidrug-resistant organisms present a challenge in LTACHs. Continued HAI surveillance with pathogen-level data can guide prevention efforts in LTACHs.Infect Control Hosp Epidemiol 2012;33(10):993-1000


2016 ◽  
Vol 55 (4) ◽  
pp. 239-247 ◽  
Author(s):  
Irena Klavs ◽  
Jana Kolman ◽  
Tatjana Lejko Zupanc ◽  
Božena Kotnik Kevorkijan ◽  
Aleš Korošec ◽  
...  

Abstract Introduction In the second Slovenian national healthcare-associated infections (HAIs) prevalence survey, conducted within the European point prevalence survey of HAIs and antimicrobial use in acute-care hospitals, we estimated the prevalence of all types of HAIs and identified risk factors. Methods Patients from acute-care hospitals were enrolled into a one-day cross-sectional study in October 2011. Descriptive analyses were performed to describe the characteristics of patients, their exposure to invasive procedures and the prevalence of different types of HAIs. Univariate and multivariate analyses of association of having at least one HAI with possible risk factors were performed to identify risk factors. Results Among 5628 patients, 3.8% had at least one HAI and additional 2.6% were still being treated for HAIs on the day of the survey; the prevalence of HAIs was 6.4%. The prevalence of urinary tract infections was the highest (1.4%), followed by pneumoniae (1.3%) and surgical site infections (1.2%). In intensive care units (ICUs), the prevalence of patients with at least one HAI was 35.7%. Risk factors for HAIs included central vascular catheter (adjusted odds ratio (aOR) 4.0; 95% confidence intervals (CI): 2.9-5.7), peripheral vascular catheter (aOR 2.0; 95% CI: 1.5-2.6), intubation (aOR 2.3; 95% CI: 1.4-3.5) and rapidly fatal underlying condition (aOR 2.1; 95% CI: 1.4-3.3). Conclusions The prevalence of HAIs in Slovenian acute-care hospitals in 2011 was substantial, especially in ICUs. HAIs prevention and control is an important public health priority. National surveillance of HAIs in ICUs should be developed to support evidence-based prevention and control.


Author(s):  
Athena P Kourtis ◽  
Edward A Sheriff ◽  
Lindsey M Weiner-Lastinger ◽  
Kim Elmore ◽  
Leigh Ellyn Preston ◽  
...  

Abstract Background Escherichia coli is one of the most common causes of healthcare-associated infections (HAIs); multidrug resistance reduces available options for antibiotic treatment. We examined factors associated with the spread of multidrug-resistant E. coli phenotypes responsible for device- and procedure-related HAIs from acute care hospitals, long-term acute care hospitals, and inpatient rehabilitation facilities, using isolate and antimicrobial susceptibility data reported to the National Healthcare Safety Network during 2013–2017. Methods We used multivariable logistic regression to examine associations between co-resistant phenotypes, patient and healthcare facility characteristics, and time. We also examined the geographic distribution of co-resistant phenotypes each year by state and by hospital referral region to identify hot spots. Results A total of 96 672 E. coli isolates were included. Patient median age was 62 years, and 60% were female; more than half (54%) were reported from catheter-associated urinary tract infections. From 2013 to 2017, 35% of the isolates were nonsusceptible to fluoroquinolones (FQs), 17% to extended-spectrum cephalosporins (ESCs), and 13% to both ESCs and FQs. The proportion of isolates co-resistant to ESCs and FQs was higher in 2017 (14%) than in 2013 (11%) (P &lt; .0001); overall prevalence and increases were heterogeneously distributed across healthcare referral regions. Co-resistance to FQs and ESCs was independently associated with male sex, central line–associated bloodstream infections, long-term acute care hospitals, and the 2016–2017 (vs 2013–2014) reporting period. Conclusions Multidrug resistance among E. coli causing device- and procedure-related HAIs has increased in the United States. FQ and ESC co-resistant strains appear to be spreading heterogeneously across hospital referral regions.


2015 ◽  
Vol 36 (12) ◽  
pp. 1379-1384 ◽  
Author(s):  
Minn M. Soe ◽  
Carolyn V. Gould ◽  
Daniel Pollock ◽  
Jonathan Edwards

OBJECTIVETo develop a method for calculating the number of healthcare-associated infections (HAIs) that must be prevented to reach a HAI reduction goal and identifying and prioritizing healthcare facilities where the largest reductions can be achieved.SETTINGAcute care hospitals that report HAI data to the Centers for Disease Control and Prevention’s National Healthcare Safety Network.METHODSThe cumulative attributable difference (CAD) is calculated by subtracting a numerical prevention target from an observed number of HAIs. The prevention target is the product of the predicted number of HAIs and a standardized infection ratio goal, which represents a HAI reduction goal. The CAD is a numeric value that if positive is the number of infections to prevent to reach the HAI reduction goal. We calculated the CAD for catheter-associated urinary tract infections for each of the 3,639 hospitals that reported such data to National Healthcare Safety Network in 2013 and ranked the hospitals by their CAD values in descending order.RESULTSOf 1,578 hospitals with positive CAD values, preventing 10,040 catheter-associated urinary tract infections at 293 hospitals (19%) with the highest CAD would enable achievement of the national 25% catheter-associated urinary tract infection reduction goal.CONCLUSIONThe CAD is a new metric that facilitates ranking of facilities, and locations within facilities, to prioritize HAI prevention efforts where the greatest impact can be achieved toward a HAI reduction goal.Infect. Control Hosp. Epidemiol. 2015;36(12):1379–1384


Sign in / Sign up

Export Citation Format

Share Document