The influence of Reynolds number on the triple point trajectories at shock reflection off cylindrical surfaces

2014 ◽  
Vol 740 ◽  
pp. 47-60 ◽  
Author(s):  
H. Kleine ◽  
E. Timofeev ◽  
A. Hakkaki-Fard ◽  
B. Skews

AbstractIn the unsteady process of shock reflection off convexly curved surfaces, the Reynolds number can have an influence on the development of the irregular reflection pattern. Time-resolved visualizations of the reflection process and high-resolution numerical simulation are used in this investigation to quantify this influence, which manifests itself in a delayed growth of the shock pattern with decreasing Reynolds number. In order to conduct reliable and unambiguous measurements, the present study concentrates on observing the development of the established irregular reflection pattern rather than attempting to determine the transition point directly. It can be seen that the influence of the Reynolds number is highly nonlinear and that changes of two orders of magnitude or more are required to produce a reliably measurable difference in the triple point trajectories, which is considerably more than what has so far been reported in the literature. The results allow one to make inferences regarding the transition process and they help to clarify previously reported discrepancies between predicted and experimentally determined transition angles.

2009 ◽  
Vol 630 ◽  
pp. 129-153 ◽  
Author(s):  
R. HAIN ◽  
C. J. KÄHLER ◽  
R. RADESPIEL

The laminar separation bubble on an SD7003 aerofoil at a Reynolds numberRe= 66000 was investigated to determine the dominant frequencies of the transition process and the flapping of the bubble. The measurements were performed with a high-resolution time-resolved particle image velocimetry (TR-PIV) system. Contrary to typical measurements performed through conventional PIV, the different modes can be identified by applying TR-PIV. The interaction between the shed vortices is analysed, and their significance for the production of turbulence is presented. In the shear layer above the bubble the generation and amplification of vortices due to Kelvin–Helmholtz instabilities is observed. It is found that these instabilities have a weak coherence in the spanwise direction. In a later stage of transition these vortices lead to a three-dimensional breakdown to turbulence.


Author(s):  
B.J. Cain ◽  
G.L. Woods ◽  
A. Syed ◽  
R. Herlein ◽  
Toshihiro Nomura

Abstract Time-Resolved Emission (TRE) is a popular technique for non-invasive acquisition of time-domain waveforms from active nodes through the backside of an integrated circuit. [1] State-of-the art TRE systems offer high bandwidths (> 5 GHz), excellent spatial resolution (0.25um), and complete visibility of all nodes on the chip. TRE waveforms are typically used for detecting incorrect signal levels, race conditions, and/or timing faults with resolution of a few ps. However, extracting the exact voltage behavior from a TRE waveform is usually difficult because dynamic photon emission is a highly nonlinear process. This has limited the perceived utility of TRE in diagnosing analog circuits. In this paper, we demonstrate extraction of voltage waveforms in passing and failing conditions from a small-swing, differential logic circuit. The voltage waveforms obtained were crucial in corroborating a theory for some failures inside an 0.18um ASIC.


Author(s):  
Hauke Ehlers ◽  
Robert Konrath ◽  
Marcel Börner ◽  
Ralf Wokoeck ◽  
Rolf Radespiel

Author(s):  
E. Valenti ◽  
J. Halama ◽  
R. De´nos ◽  
T. Arts

This paper presents steady and unsteady pressure measurements at three span locations (15, 50 and 85%) on the rotor surface of a transonic turbine stage. The data are compared with the results of a 3D unsteady Euler stage calculation. The overall agreement between the measurements and the prediction is satisfactory. The effects of pressure ratio and Reynolds number are discussed. The rotor time-averaged Mach number distribution is very sensitive to the pressure ratio of the stage since the incidence of the flow changes as well as the rotor exit Mach number. The time-resolved pressure field is dominated by the vane trailing edge shock waves. The incidence and intensity of the shock strongly varies from hub to tip due to the radial equilibrium of the flow at the vane exit. The decrease of the pressure ratio attenuates significantly the amplitude of the fluctuations. An increase of the pressure ratio has less significant effect since the change in the vane exit Mach number is small. The effect of the Reynolds number is weak for both the time-averaged and the time-resolved rotor static pressure at mid-span, while it causes an increase of the pressure amplitudes at the two other spans.


1998 ◽  
Vol 360 ◽  
pp. 249-271 ◽  
Author(s):  
H. DÜTSCH ◽  
F. DURST ◽  
S. BECKER ◽  
H. LIENHART

Time-averaged LDA measurements and time-resolved numerical flow predictions were performed to investigate the laminar flow induced by the harmonic in-line oscillation of a circular cylinder in water at rest. The key parameters, Reynolds number Re and Keulegan–Carpenter number KC, were varied to study three parameter combinations in detail. Good agreement was observed for Re=100 and KC=5 between measurements and predictions comparing phase-averaged velocity vectors. For Re=200 and KC=10 weakly stable and non-periodic flow patterns occurred, which made repeatable time-averaged measurements impossible. Nevertheless, the experimentally visualized vortex dynamics was reproduced by the two-dimensional computations. For the third combination, Re=210 and KC=6, which refers to a totally different flow regime, the computations again resulted in the correct fluid behaviour. Applying the widely used model of Morison et al. (1950) to the computed in-line force history, the drag and the added-mass coefficients were calculated and compared for different grid levels and time steps. Using these to reproduce the force functions revealed deviations from those originally computed as already noted in previous studies. They were found to be much higher than the deviations for the coarsest computational grid or the largest time step. The comparison of several in-line force coefficients with results obtained experimentally by Kühtz (1996) for β=35 confirmed that force predictions could also be reliably obtained by the computations.


Author(s):  
M. Dellacasagrande ◽  
R. Guida ◽  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
...  

Experimental data describing laminar separation bubbles developing under strong adverse pressure gradients, typical of Ultra-High-Lift turbine blades, have been analyzed to define empirical correlations able to predict the main features of the separated flow transition. Tests have been performed for three different Reynolds numbers and three different free-stream turbulence intensity levels. For each condition, around 4000 Particle Image Velocimetry (PIV) snapshots have been acquired. A wavelet based intermittency detection technique, able to identify the large scale vortices shed as a consequence of the separation, has been applied to the large amount of data to efficiently compute the intermittency function for the different conditions. The transition onset and end positions, as well as the turbulent spot production rate are evaluated. Thanks to the recent advancements in the understanding on the role played by Reynolds number and free-stream turbulence intensity on the dynamics leading to transition in separated flows, guest functions are proposed in the paper to fit the data. The proposed functions are able to mimic the effects of Reynolds number and free-stream turbulence intensity level on the receptivity process of the boundary layer in the attached part, on the disturbance exponential growth rate observed in the linear stability region of the separated shear layer, as well as on the nonlinear later stage of completing transition. Once identified the structure of the correlation functions, a fitting process with own and literature data allowed us to calibrate the unknown constants. Results reported in the paper show the ability of the proposed correlations to adequately predict the transition process in the case of separated flows. The correlation for the spot production rate here proposed extends the correlations proposed in liter-ature for attached (by-pass like) transition process, and could be used in γ–Reϑ codes, where the spot production rate appears as a source term in the intermittency function transport equation.


Author(s):  
F. Didier ◽  
R. De´nos ◽  
T. Arts

This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15%, 50% and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.


1990 ◽  
Vol 112 (2) ◽  
pp. 206-214 ◽  
Author(s):  
J. S. Addison ◽  
H. P. Hodson

Previously published measurements in a low-speed, single-stage, axial-flow turbine have been reanalyzed in the light of more recent understanding. The measurements include time-resolved hot-wire traverses and surface hot film gage measurements at the midspan of the rotor suction surface with three different rotor-stator spacings. Part 1 investigates the suction surface boundary layer transition process, using surface-distance time plots and boundary layer cross sections to demonstrate the unsteady and two-dimensional nature of the process. Part 2 of the paper will describe the results of supporting experiments carried out in a linear cascade together with a simple transition model, which explains the features seen in the turbine.


1976 ◽  
Vol 73 (1) ◽  
pp. 77-96 ◽  
Author(s):  
Tin-Kan Hung ◽  
Thomas D. Brown

Some insight into the mechanism of solid-particle transport by peristalsis is sought experimentally through a two-dimensional model study (§ 2). The peristaltic wave is characterized by a single bolus sweeping by the particle, resulting in oscillatory motion of the particle. Because of fluid-particle interaction and the significant curvature in the wall wave, the peristaltic flow is highly nonlinear and time dependent.For a neutrally buoyant particle propelled along the axis of the channel by a single bolus, the net particle displacement can be either positive or negative. The instantaneous force acting upon the particle and the resultant particle trajectory are sensitive to the Reynolds number of the flow (§ 3 and 4). The net forward movement of the particle increases slightly with the particle size but decreases rapidly as the gap width of the bolus increases. The combined dynamic effects of the gap width and Reynolds number on the particle displacement are studied (§ 5). Changes in both the amplitude and the form of the wave have significant effects on particle motion. A decrease in wave amplitude along with an increase in wave speed may lead to a net retrograde particle motion (§ 6). For a non-neutrally buoyant particle, the gravitational effects on particle transport are modelled according to the ratio of the Froude number to the Reynolds number. The interaction of the particle with the wall for this case is also explored (§ 7).When the centre of the particle is off the longitudinal axis, the particle will undergo rotation as well as translation. Lateral migration of the particle is found to occur in the curvilinear flow region of the bolus, leading to a reduction in the net longitudinal transport (§ 8). The interaction of the curvilinear flow field with the particle is further discussed through comparison of flow patterns around a particle with the corresponding cases without a particle (§ 9).


Sign in / Sign up

Export Citation Format

Share Document