Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces

2014 ◽  
Vol 752 ◽  
pp. 39-65 ◽  
Author(s):  
Fangjie Liu ◽  
Giovanni Ghigliotti ◽  
James J. Feng ◽  
Chuan-Hua Chen

AbstractCoalescing drops spontaneously jump out of plane on a variety of biological and synthetic superhydrophobic surfaces, with potential applications ranging from self-cleaning materials to self-sustained condensers. To investigate the mechanism of self-propelled jumping, we report three-dimensional phase-field simulations of two identical spherical drops coalescing on a flat surface with a contact angle of 180°. The numerical simulations capture the spontaneous jumping process, which follows the capillary–inertial scaling. The out-of-plane directionality is shown to result from the counter-action of the substrate to the impingement of the liquid bridge between the coalescing drops. A viscous cutoff to the capillary–inertial velocity scaling is identified when the Ohnesorge number of the initial drops is around 0.1, but the corresponding viscous cutoff radius is too small to be tested experimentally. Compared to experiments on both superhydrophobic and Leidenfrost surfaces, our simulations accurately predict the nearly constant jumping velocity of around 0.2 when scaled by the capillary–inertial velocity. By comparing the simulated drop coalescence processes with and without the substrate, we attribute this low non-dimensional velocity to the substrate intercepting only a small fraction of the expanding liquid bridge.

2014 ◽  
Vol 752 ◽  
pp. 22-38 ◽  
Author(s):  
Fangjie Liu ◽  
Giovanni Ghigliotti ◽  
James J. Feng ◽  
Chuan-Hua Chen

AbstractSelf-propelled jumping upon drop coalescence has been observed on a variety of textured superhydrophobic surfaces, where the jumping motion follows the capillary–inertial velocity scaling as long as the drop radius is above a threshold. In this paper, we report an experimental study of the self-propelled jumping on a Leidenfrost surface, where the heated substrate gives rise to a vapour layer on which liquid drops float. For the coalescence of identical water drops, we have tested initial drop radii ranging from 20 to $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}500\ \mu \mathrm{m}$, where the lower bound is related to the spontaneous takeoff of individual drops and the upper bound to gravitational effects. Regardless of the approaching velocity prior to coalescence, the measured jumping velocity is around 0.2 when scaled by the capillary–inertial velocity. This constant non-dimensional velocity holds for the experimentally accessible range of drop radii, and we have found no cutoff radius for the scaling, in contrast to prior experiments on textured superhydrophobic surfaces. The Leidenfrost experiments quantitatively agree with our numerical simulations of drop coalescence on a flat surface with a contact angle of 180°, suggesting that the cutoff is likely to be due to drop–surface interactions unique to the textured superhydrophobic surfaces.


2015 ◽  
Vol 82 (11) ◽  
Author(s):  
François Robert Hogan ◽  
James Richard Forbes

The motion equations of a rolling flexible circular ring are derived using a Lagrangian formulation. The in-plane flexural and out-of-plane twist-bending free vibrations are modeled using the Rayleigh–Ritz method. The motion equations of a flexible circular ring translating and rotating in space are first developed and then constrained to roll on a flat surface by introducing Lagrange multipliers. The motion equations developed capture the nonholonomic nature of the circular ring rolling without slip on a flat surface. Numerical simulations are performed to validate the dynamic model developed and to investigate the effect of the flexibility of the circular ring on its trajectory. The vibrations of the circular ring are observed to impact the ring's motion.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Mihaela Neamţu ◽  
Anamaria Liţoiu ◽  
Petru C. Strain

We propose a three-dimensional autonomous nonlinear system, called the generalTsystem, which has potential applications in secure communications and the electronic circuit. For the generalTsystem with delayed feedback, regarding the delay as bifurcation parameter, we investigate the effect of the time delay on its dynamics. We determine conditions for the existence of the Hopf bifurcations and analyze their direction and stability. Also, the fractional order generalT-system is proposed and analyzed. We provide some numerical simulations, where the chaos attractor and the dynamics of the Lyapunov coefficients are taken into consideration. The effectiveness of the chaotic control and synchronization on schemes for the new fractional order chaotic system are verified by numerical simulations.


Author(s):  
Bahni Ray ◽  
Gautam Biswas ◽  
Ashutosh Sharma

Numerical simulations using coupled level-set and volume-of-fluid (CLSVOF) method has been carried out to capture the vortex ring when a drop coalesces on a pool of liquid. A study has been done for the formation and motion of vortex rings generated when drops of liquid are allowed to come into contact at zero velocity with a quiescent flat surface of the same liquid.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


Sign in / Sign up

Export Citation Format

Share Document