scholarly journals The nonlinear states of viscous capillary jets confined in the axial direction

2017 ◽  
Vol 834 ◽  
pp. 335-358 ◽  
Author(s):  
A. Martínez-Calvo ◽  
M. Rubio-Rubio ◽  
A. Sevilla

We report an experimental and theoretical study of the global stability and nonlinear dynamics of vertical jets of viscous liquid confined in the axial direction due to their impact on a bath of the same liquid. Previous works demonstrated that in the absence of axial confinement the steady liquid thread becomes unstable due to an axisymmetric global mode for values of the flow rate, $Q$, below a certain critical value, $Q_{c}$, giving rise to oscillations of increasing amplitude that finally lead to a dripping regime (Sauter & Buggisch, J. Fluid Mech., vol. 533, 2005, pp. 237–257; Rubio-Rubio et al., J. Fluid Mech., vol. 729, 2013, pp. 471–483). Here we focus on the effect of the jet length, $L$, on the transitions that take place for decreasing values of $Q$. The linear stability analysis shows good agreement with our experiments, revealing that $Q_{c}$ increases monotonically with $L$, reaching the semi-infinite jet asymptote for sufficiently large values of $L$. Moreover, as $L$ decreases a quasi-static limit is reached, whereby $Q_{c}\rightarrow 0$ and the neutral conditions are given by a critical length determined by hydrostatics. Our experiments have also revealed the existence of a new regime intermediate between steady jetting and dripping, in which the thread reaches a limit-cycle state without breakup. We thus show that there exist three possible states depending on the values of the control parameters, namely steady jetting, oscillatory jetting and dripping. For two different combinations of liquid viscosity, $\unicode[STIX]{x1D708}$, and injector radius, $R$, the boundaries separating these regimes have been determined in the $(Q,L)$ parameter plane, showing that steady jetting exists for small enough values of $L$ or large enough values of $Q$, dripping prevails for small enough values of $Q$ or sufficiently large values of $L$, and oscillatory jetting takes place in an intermediate region whose size increases with $\unicode[STIX]{x1D708}$ and decreases with $R$.

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Eduard Amromin

According to several known experiments, an increase of the incoming flow air content can increase the hydrofoil lift coefficient. The presented theoretical study shows that such increase is associated with the decrease of the fluid density at the cavity surface. This decrease is caused by entrainment of air bubbles to the cavity from the surrounding flow. The theoretical results based on such explanation are in a good agreement with the earlier published experimental data for NACA0015.


1971 ◽  
Vol 26 (12) ◽  
pp. 1235-1240 ◽  
Author(s):  
L. Klasinc ◽  
J. V. Knop

The LCAO -MO -SCF -CI method was applied to benzo(1,2-b : 4,3-b′) -difuran and -dithiophene, benzo (2,1-b : 3,4-b′) -difuran and -dithiophene, benzo (1,2-b : 3,4-b′) -difuran and -dithiophene, thieno (2,3-e) benzofuran, thieno (3,2-e) benzofuran, thieno (3,2-g) benzofuran, thieno (2,3-g) benzofuran, benzofuran, benzothiophene and phenanthrene. The calculated π-electron transitions and their oscillator strengths are in good agreement with known absorption spectra. The resemblance of these spectra to the absorption spectra of phenanthrene and phenanthrolines is discussed.


Author(s):  
А.Д. Колоскова ◽  
О.И. Москаленко ◽  
А.А. Короновский

AbstractA method for calculating the spectrum of Lyapunov exponents for delay systems is proposed. To validate the method, a delayed-feedback oscillator and the Mackay–Glass equation are considered as model systems. For both systems, bifurcation diagrams and spectra of Lyapunov exponents are constructed as functions of one of the control parameters. The results are shown to be in good agreement with each other, which indicates the efficacy of the proposed method.


1986 ◽  
Vol 108 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Han C. Wu ◽  
J. C. Yao ◽  
S. C. Chu

Plastic-strain controlled test is investigated both experimentally and theoretically. The plastic-strain control is feasible by means of computer-aided material test system. Theoretical study is made by use of the modified endochronic theory in which plastic strain is employed to define intrinsic time. Three in-phase plastic-strain paths (a pure axial path, a pure torsional path and an axial-torsional in-phase path) and two out-of-phase plastic-strain paths (small and large perturbations from the axial-torsional in-phase path) are studied. It is shown that the theory and experiment have good agreement. Furthermore, both experimental and theoretical results show that strain-hardening is enhanced by out-of-phase loading.


2007 ◽  
Vol 2007 ◽  
pp. 1-4 ◽  
Author(s):  
Dong Liang ◽  
Qirong Xing ◽  
Zhen Tian ◽  
Changlei Wang ◽  
Weili Zhang ◽  
...  

This paper presents a fully experimental and theoretical study on transmission properties of a deep metallic grating with subwavelength slits in THz frequency region by using THz time domain spectroscopy (THz-TDS). The grating exposed top-polarized incident wave exhibits enhanced nonresonant transmission in the long-wavelength region where the incident wavelength is larger than the grating period. Wood anomalies are observed when the wavelength is comparable to the grating period. Strict theory is given to explain the experimental results and the two are in good agreement. It is proposed that the Wood dips may be considered a criterion and a tool to judge and control the uniformity or fabricating accuracy of the grating period.


1961 ◽  
Vol 28 (2) ◽  
pp. 252-258 ◽  
Author(s):  
G. V. Parkinson ◽  
N. P. H. Brooks

The validity of quasi-steady theory, using experimental aerodynamic coefficients, to explain the observed aeroelastic instability of bluff cylinders in a uniform stream is examined for several cylinder sections. Only plunging oscillation is considered, and the analytical model is an oscillator with nonlinear damping dependent on the aerodynamic coefficients. Static and dynamic wind-tunnel tests were made of cylinder models of square, rectangular, and D-section. The D-section and the short rectangular sections behaved dynamically like the circular cylinder, showing plunge instability only near resonance with the von Karman vortex street. In complete contrast, the square and long rectangular sections showed plunge instability with amplitude increasing with wind speed for all speeds above a critical value. These dynamic results were in quite good agreement with the theoretical predictions, using the static test data.


An attempt is made to examine theoretically the properties of paramagnetic alums at low temperatures. The model taken is a lattice of freely suspended magnets, all interactions except purely magnetic being neglected. Even with this simplification it is impossible at present to make rigorous calculations of the partition function, either on classical or quantum lines. A simple model is proposed, which is really a generalization of the Bragg - Williams theory enabling one to take account of the effect of a magnetic field. The few configurations whose energies are known are used to fix arbitrary constants in the expression assumed for the energy. The theory predicts that the state of lowest energy is either a spontaneously magnetized, state for a long thin specimen, or a state in which alternate rows of magnets point in opposite directions for a sphere, spontaneous magnetization appearing in an ellipsoid with an eccentricity greater than a certain critical value. The transition curve bounding the region in which the antiparallel state is stable consists partly of a line of Curie points corresponding to transitions of the second, order, passing smoothly into a line of critical points corresponding to a transition of the first order. The effect of shape on the magnetic properties of the specimen seems to be experimentally verified, but the rough nature of the theory prevents it being more than qualitative.


1985 ◽  
Vol 38 (12) ◽  
pp. 1779 ◽  
Author(s):  
RH Contreras ◽  
CG Giribet ◽  
MA Natiello ◽  
J Perez ◽  
ID Rae ◽  
...  

Calculations by the IPPP-INDO method give the spin-spin coupling constants for the side-chain carbons, 3JCF and 4JCF, as 4.97 and 6.86 Hz respectively with substantial contributions to through-space coupling from the pathway CO-C-H…F. The observed values for 1-(2- fluorophenyl ) ethanone , 3.3 and 7.2 Hz, and for 1-(2,5- difluorophenyl ) ethanone , 3.7 and 7.3 Hz, are in good agreement with these predictions. Two compounds, a dihydroindenone and a naphthalenone, in which this pathway cannot be effective, show no fluorine coupling to the aliphatic carbon next to the carbonyl and the values of 3JCF are reduced to 2.2 and 2.5 Hz, consistent with the loss of a through-space Fermi contact term of the kind described above.


2008 ◽  
Vol 598 ◽  
pp. 451-464 ◽  
Author(s):  
BERTRAND VIAUD ◽  
ERIC SERRE ◽  
JEAN-MARC CHOMAZ

Spectral direct numerical simulations (DNS) are carried out for a source–sink flow in an annular cavity between two co-rotating disks. When the Reynolds number based on the forced inflow is increased, a self-sustained crossflow instability of finite amplitude is observed. We show that this nonlinear global mode is made up of a front located at the upstream boundary of the absolutely unstable domain, followed by a saturated spiral mode, and that its properties are in good agreement with results of the local stability theory. This structure is characteristic of the so-called elephant mode of Pier & Huerre (J. Fluid Mech. vol. 435, 2001, p. 145). The global bifurcation is subcritical since only large-amplitude initial perturbations are found to trigger the elephant mode. Small-amplitude perturbations induce a long-lasting transient growth but lead eventually to a damped linear global mode, showing that non-parallel effects counteract the absolute instability and restabilize the flow. A similar linear global stabilization due to non-parallel effects has been found in the case of the flow above a single rotating disk. For the single-disk geometry, the existence of an elephant mode would imply, together with results of Davies & Carpenter (2003) a subcritical global instability, which has not yet been demonstrated. Although the present geometry differs from the single-disk case, the existence of a subcritical global bifurcation is now established, allowing a precise analysis of the transition scenarios.


1974 ◽  
Vol 65 ◽  
pp. 337-344 ◽  
Author(s):  
Harold C. Graboske

A recent theoretical study of the structure and evolution of Jupiter (Graboske et al., 1974b) is based on a three-stage model of Jovian evolution. The central phase, gravitational contraction of an adiabatic, homogeneous convective fluid system, begins early in solar system evolution and lasts for times of the order of 2 × 109 yr. Good agreement with observed radius and luminosity is achieved for a model with a solar mixture composition. The surface boundary layer has a dominant influence on the evolutionary timescale. Surface boundary factors which are important are the solar energy input, a function of the solar luminosity and the planetary albedo, and the detailed physics of the superadiabatic zone, which depends on the variation of opacity and ∇ad with depth. The evolutionary study demonstrates that the current planet cannot be an adiabatic homogeneous fluid throughout. The inclusion of a superadiabatic zone is necessary, and the existence of a heterogeneous (gravitationally layered) fluid interior is possible.


Sign in / Sign up

Export Citation Format

Share Document