Early azimuthal instability during drop impact

2018 ◽  
Vol 848 ◽  
pp. 821-835 ◽  
Author(s):  
E. Q. Li ◽  
M.-J. Thoraval ◽  
J. O. Marston ◽  
S. T. Thoroddsen

When a drop impacts on a liquid surface its bottom is deformed by lubrication pressure and it entraps a thin disc of air, thereby making contact along a ring at a finite distance from the centreline. The outer edge of this contact moves radially at high speed, governed by the impact velocity and bottom radius of the drop. Then at a certain radial location an ejecta sheet emerges from the neck connecting the two liquid masses. Herein, we show the formation of an azimuthal instability at the base of this ejecta, in the sharp corners at the two sides of the ejecta. They promote regular radial vorticity, thereby breaking the axisymmetry of the motions on the finest scales. The azimuthal wavenumber grows with the impact Weber number, based on the bottom curvature of the drop, reaching over 400 streamwise streaks around the periphery. This instability occurs first at Reynolds numbers ($Re$) of ${\sim}7000$, but for larger $Re$ is overtaken by the subsequent axisymmetric vortex shedding and their interactions can form intricate tangles, loops or chains.

Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 19
Author(s):  
Ola Elfmark ◽  
Robert Reid ◽  
Lars Morten Bardal

The purpose of this study was to investigate the impact of blockage effect and Reynolds Number dependency by comparing measurements of an alpine skier in standardized positions between two wind tunnels with varying blockage ratios and speed ranges. The results indicated significant blockage effects which need to be corrected for accurate comparison between tunnels, or for generalization to performance in the field. Using an optimized blockage constant, Maskell’s blockage correction method improved the mean absolute error between the two wind tunnels from 7.7% to 2.2%. At lower Reynolds Numbers (<8 × 105, or approximately 25 m/s in this case), skier drag changed significantly with Reynolds Number, indicating the importance of testing at competition specific wind speeds. However, at Reynolds Numbers above 8 × 105, skier drag remained relatively constant for the tested positions. This may be advantageous when testing athletes from high speed sports since testing at slightly lower speeds may not only be safer, but may also allow the athlete to reliably maintain difficult positions during measurements.


Author(s):  
Liang Xue ◽  
Claire R. Coble ◽  
Hohyung Lee ◽  
Da Yu ◽  
Satish Chaparala ◽  
...  

Response of brittle plate to impact loads has been the subject of many research studies [1–7]. Specifically, glass presents a wide variety of applications in daily life, and helps to protect the displays of smartphones, tablets, PCs, and TVs from everyday wear and tear. Therefore, the necessity of glass to resist scratches, drop impacts, and bumps from everyday use leads to the importance of investigation of the glass response under dynamic impact loading. The ball drop test has been applied in the past, specifying an energy threshold as a prediction metric. Use of energy as the key parameter in impact testing is limited, since it does not account for the time spent in contact during the impact event. This study attempts to establish a reliable metric for impact testing based on a momentum change threshold. The deformation and the strain of the glass will be obtained by the Digital Image Correlation (DIC) system, while the rebound velocity will be measured with the high speed cameras. The global and local measurements are conducted to verify the accuracy of the experimental results. Finally, the FEA model is developed using ANSYS/LS-DYNA to provide a comprehensive understanding of the dynamic response of the glass. Excellent correlation in deflection is obtained between the measurements and predictions.


Author(s):  
Jonathan Tschepe ◽  
Jörg-Torsten Maaß ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

This paper presents the results of experimental investigations on the aerodynamic drag of roof-mounted insulators for use on low- and high-speed trains. Wind tunnel investigations at different Reynolds numbers in the subcritical, critical, and supercritical flow regime were performed, in addition to investigations using wall-mounted cylinders. Furthermore, the impact of insulator sheds made of flexible material was analyzed. For a better understanding of the aerodynamic behavior of the insulators when mounted on trains, different boundary conditions representing realistic configurations as found on the roof of trains were simulated. From the measured drag, the energy demand to overcome the aerodynamic resistance of different types of insulators was calculated. Depending on the above mentioned boundary conditions, a noticeable contribution of the insulators to the entire train's aerodynamic drag could be observed. With flexible insulator sheds, a further increased air resistance was observed with the onset of fluttering. Similar to the cylinder, the aerodynamic behavior of the insulators depends on the respective Reynolds number.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 141 ◽  
Author(s):  
Manfredo Guilizzoni ◽  
Maurizio Santini ◽  
Stephanie Fest-Santini

Drop impacts (onto dry or wet surfaces or into deep pools) are important in a wide range of applications, and, consequently, many studies, both experimental and numerical, are available in the literature. However, such works are focused either on statistical analyses of drop populations or on single drops. The literature is heavily lacking in information about the mutual interactions between a few drops during the impact. This work describes a computational fluid dynamics (CFD) study on the impact of two, three, and four synchronized drops into a deep pool. The two-phase finite-volume solver interFoam of the open source CFD package OpenFOAM® was used. After validation with respect to high speed videos, to confirm the performance of the solver in this field, impact conditions and aspects that would have been difficult to obtain and to study in experiments were investigated: namely, the energy conversion during the crater evolution, the effect of varying drop interspace and surface tension, and multiple drop impacts. The results show the very significant effect of these aspects. This implies that an extension of the results of single-drop, distilled-water laboratory experiments to real applications may not be reliable.


2003 ◽  
Vol 478 ◽  
pp. 125-134 ◽  
Author(s):  
S. T. THORODDSEN ◽  
T. G. ETOH ◽  
K. TAKEHARA

When a drop impacts on a liquid surface it entraps a small amount of air under its centre as the two liquid surfaces meet. The contact occurs along a ring enclosing a thin disk of air. We use the next-generation ultra-high-speed video camera, capable of 1 million f.p.s. (Etoh et al. 2002), to study the dynamics of this air sheet as it contracts due to surface tension, to form a bubble or, more frequently, splits into two bubbles. During the contraction of the air disk an azimuthal undulation, resembling a pearl necklace, develops along its edge. The contraction speed of the sheet is accurately described by a balance between inertia and surface tension. The average initial thickness of the air sheet decreases with higher impact Reynolds numbers, becoming less than one micron. The total volume of air entrapped depends strongly on the bottom curvature of the drop at impact. A sheet of micro-bubbles is often observed along the original interface. Oguz–Prosperetti bubble rings are also observed. For low Weber numbers (We<20) a variety of other entrapment phenomena appear.


2015 ◽  
Vol 780 ◽  
pp. 636-648 ◽  
Author(s):  
E. Q. Li ◽  
S. T. Thoroddsen

When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.


2013 ◽  
Vol 716 ◽  
Author(s):  
Yuan Liu ◽  
Peng Tan ◽  
Lei Xu

AbstractUsing high-speed photography coupled with optical interference, we experimentally study the air entrapment during a liquid drop impacting a solid substrate. We observe the formation of a compressed air film before the liquid touches the substrate, with internal pressure considerably higher than the atmospheric value. The degree of compression highly depends on the impact velocity, as explained by balancing the liquid deceleration with the large pressure of the compressed air. After contact, the air film expands vertically at the edge, reducing its pressure within a few tens of microseconds and producing a thick rim on the perimeter. This thick-rimmed air film subsequently contracts into an air bubble, governed by the complex interaction between surface tension, inertia and viscous drag. Such a process is universally observed for impacts above a few centimetres high.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


Sign in / Sign up

Export Citation Format

Share Document