scholarly journals Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids

2018 ◽  
Vol 852 ◽  
pp. 329-357 ◽  
Author(s):  
Dhiya Alghalibi ◽  
Iman Lashgari ◽  
Luca Brandt ◽  
Sarah Hormozi

We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ($0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$) and particle Reynolds numbers ($0.1\leqslant Re_{p}\leqslant 10$). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $\unicode[STIX]{x1D6F7}$. This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. (J. Rheol., vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $Re_{p}$. The wide spectrum of the local shear rate and its dependency on $\unicode[STIX]{x1D6F7}$ and $Re_{p}$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $O(Re_{p})\sim 10$.

2007 ◽  
Vol 280-283 ◽  
pp. 1039-1040
Author(s):  
Tie Chao Wang ◽  
Jin Long Yang ◽  
Li Guo Ma ◽  
Yong Huang

Rheological behaviors of alumina aqueous suspension were investigated, and some methods to modify the rheological behaviors of the suspensions were studied. It was found that there is a critical solid volume fraction for alumina aqueous suspensions. When the volume fraction reaches or exceeds the critical value the suspensions show shear thinning behaviors all along, while above which the rheological behaviors of alumina suspensions change from shear thinning to shear thickening.


2008 ◽  
Vol 600 ◽  
pp. 339-371 ◽  
Author(s):  
YUKIE TANINO ◽  
HEIDI M. NEPF

Laser-induced fluorescence was used to measure the lateral dispersion of passive solute in random arrays of rigid, emergent cylinders of solid volume fraction φ=0.010–0.35. Such densities correspond to those observed in aquatic plant canopies and complement those in packed beds of spheres, where φ≥0.5. This paper focuses on pore Reynolds numbers greater than Res=250, for which our laboratory experiments demonstrate that the spatially averaged turbulence intensity and Kyy/(Upd), the lateral dispersion coefficient normalized by the mean velocity in the fluid volume, Up, and the cylinder diameter, d, are independent of Res. First, Kyy/(Upd) increases rapidly with φ from φ =0 to φ=0.031. Then, Kyy/(Upd) decreases from φ=0.031 to φ=0.20. Finally, Kyy/(Upd) increases again, more gradually, from φ=0.20 to φ=0.35. These observations are accurately described by the linear superposition of the proposed model of turbulent diffusion and existing models of dispersion due to the spatially heterogeneous velocity field that arises from the presence of the cylinders. The contribution from turbulent diffusion scales with the mean turbulence intensity, the characteristic length scale of turbulent mixing and the effective porosity. From a balance between the production of turbulent kinetic energy by the cylinder wakes and its viscous dissipation, the mean turbulence intensity for a given cylinder diameter and cylinder density is predicted to be a function of the form drag coefficient and the integral length scale lt. We propose and experimentally verify that lt=min{d, 〈sn〉A}, where 〈sn〉A is the average surface-to-surface distance between a cylinder in the array and its nearest neighbour. We farther propose that only turbulent eddies with mixing length scale greater than d contribute significantly to net lateral dispersion, and that neighbouring cylinder centres must be farther than r* from each other for the pore space between them to contain such eddies. If the integral length scale and the length scale for mixing are equal, then r*=2d. Our laboratory data agree well with predictions based on this definition of r*.


2009 ◽  
Vol 76 (6) ◽  
Author(s):  
M. A. Dawson ◽  
G. H. McKinley ◽  
L. J. Gibson

The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic compression is studied. Under compression beyond local strain rates on the order of 1 s−1, the non-Newtonian, colloidal silica-based fluid undergoes dramatic shear thickening and then proceeds to shear thinning. In this regime, the viscosity of the fluid is large enough that the contribution of the foam and the fluid-structure interaction to the stress response of the fluid-filled foam can be neglected. An analytically tractable lubrication model for the stress-strain response of a non-Newtonian fluid-filled, reticulated, elastomeric foam under dynamic compression between two parallel plates at varying instantaneous strain rates is developed. The resulting lubrication model is applicable when the dimension of the foam in the direction of fluid flow (radial) is much greater than that in the direction of loading (axial). The model is found to describe experimental data well for a range of radius to height ratios (∼1–4) and instantaneous strain rates of the foam (1 s−1 to 4×102 s−1). The applicability of this model is discussed and the range of instantaneous strain rates of the foam over which it is valid is presented. Furthermore, the utility of this model is discussed with respect to the design and development of energy absorption and blast wave protection equipment.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2566
Author(s):  
Lioua Kolsi ◽  
Fatih Selimefendigil ◽  
Mohamed Omri

The combined effects of surface rotation and using binary nanoparticles on the phase change process in a 3D complex-shaped vented cavity with ventilation ports were studied during nanofluid convection. The geometry was a double T-shaped rotating vented cavity, while hybrid nanofluid contained binary Ag–MgO nano-sized particles. One of the novelties of the study wasthat a vented cavity was first used with the phase change–packed bed (PC–PB) system during nanofluid convection. The PC–PB system contained a spherical-shaped, encapsulated PCM paraffin wax. The Galerkin weighted residual finite element method was used as the solution method. The computations were carried out for varying values of the Reynolds numbers (100 ≤ Re ≤ 500),rotational Reynolds numbers (100 ≤ Rew ≤ 500), size of the ports (0.1L1 ≤ di ≤ 0.5L1), length of the PC–PB system (0.4L1 ≤ L0 ≤ L1), and location of the PC–PB (0 ≤ yp ≤ 0.25H). In the heat transfer fluid, the nanoparticle solid volume fraction amount was taken between 0 and 0.02%. When the fluid stream (Re) and surface rotational speed increased, the phase change process became fast. Effects of surface rotation became effective for lower values of Re while at Re = 100 and Re = 500; full phase transition time (tp) was reduced by about 39.8% and 24.5%. The port size and nanoparticle addition in the base fluid had positive impacts on the phase transition, while 34.8% reduction in tp was obtained at the largest port size, though this amount was only 9.5%, with the highest nanoparticle volume fraction. The length and vertical location of the PC–PB system have impacts on the phase transition dynamics. The reduction and increment amount in the value of tp with varying location and length of the PC–PB zone became 20% and 58%. As convection in cavities with ventilation ports are relevant in many thermal energy systems, the outcomes of this study will be helpful for the initial design and optimization of many PCM-embedded systems encountered in solar power, thermal management, refrigeration, and many other systems.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6952
Author(s):  
Noura Alsedais

The influences of superellipse shapes on natural convection in a horizontally subdivided non-Darcy porous cavity populated by Cu-water nanofluid are inspected in this paper. The impacts of the inner geometries (n = 0.5,1,1.5,4) Rayleigh number (103 ≤ Ra ≤ 106), Darcy number (10−5 ≤ Da ≤ 10−2), porosity (0.2 ≤ ϵ ≤ 0.8), and solid volume fraction (0.01 ≤ ∅ ≤ 0.05) on nanofluid heat transport and streamlines were examined. The hot superellipse shapes were placed in the cavity’s bottom and top, while the adiabatic boundaries on the flat walls of the cavity were considered. The governing equations were numerically solved using the finite volume method (FVM). It was found that the movement of the nanofluid upsurged as Ra boosted. The temperature distributions in the cavity’s core had an inverse relationship with increasing Rayleigh number. An extra porous resistance at lower Darcy numbers limited the nanofluid’s movement within the porous layers. The mean Nusselt number decreased as the porous resistance increased (Da ≤ 10−4). The flow and temperature were strongly affected as the shape of the inner superellipse grew larger.


1997 ◽  
Vol 349 ◽  
pp. 31-66 ◽  
Author(s):  
DONALD L. KOCH ◽  
ANTHONY J. C. LADD

The effects of fluid inertia on the pressure drop required to drive fluid flow through periodic and random arrays of aligned cylinders is investigated. Numerical simulations using a lattice-Boltzmann formulation are performed for Reynolds numbers up to about 180.The magnitude of the drag per unit length on cylinders in a square array at moderate Reynolds number is strongly dependent on the orientation of the drag (or pressure gradient) with respect to the axes of the array; this contrasts with Stokes flow through a square array, which is characterized by an isotropic permeability. Transitions to time-oscillatory and chaotically varying flows are observed at critical Reynolds numbers that depend on the orientation of the pressure gradient and the volume fraction.In the limit Re[Lt ]1, the mean drag per unit length, F, in both periodic and random arrays, is given by F/(μU) =k1+k2Re2, where μ is the fluid viscosity, U is the mean velocity in the bed, and k1 and k2 are functions of the solid volume fraction ϕ. Theoretical analyses based on point-particle and lubrication approximations are used to determine these coefficients in the limits of small and large concentration, respectively.In random arrays, the drag makes a transition from a quadratic to a linear Re-dependence at Reynolds numbers of between 2 and 5. Thus, the empirical Ergun formula, F/(μU) =c1+c2Re, is applicable for Re>5. We determine the constants c1 and c2 over a wide range of ϕ. The relative importance of inertia becomes smaller as the volume fraction approaches close packing, because the largest contribution to the dissipation in this limit comes from the viscous lubrication flow in the small gaps between the cylinders.


2016 ◽  
Vol 788 ◽  
pp. 695-729 ◽  
Author(s):  
Sudheer Tenneti ◽  
Mohammad Mehrabadi ◽  
Shankar Subramaniam

The acceleration of an inertial particle in a gas–solid flow arises from the particle’s interaction with the gas and from interparticle interactions such as collisions. Analytical treatments to derive a particle acceleration model are difficult outside the Stokes flow regime, but for moderate Reynolds numbers (based on the mean slip velocity between gas and particles) particle-resolved direct numerical simulation (PR-DNS) is a viable tool for model development. In this study, PR-DNS of freely-evolving gas–solid suspensions are performed using the particle-resolved uncontaminated-fluid reconcilable immersed-boundary method (PUReIBM) that has been extensively validated in previous studies. Analysis of the particle velocity variance (granular temperature) equation in statistically homogeneous gas–solid flow shows that a straightforward extension of a class of mean particle acceleration models (drag laws) to their corresponding instantaneous versions, by replacing the mean particle velocity with the instantaneous particle velocity, predicts a granular temperature that decays to zero, which is at variance with the steady particle granular temperature that is obtained from PR-DNS. Fluctuations in particle velocity and particle acceleration (and their correlation) are important because the particle acceleration–velocity covariance governs the evolution of the particle velocity variance (characterized by the particle granular temperature), which plays an important role in the prediction of the core annular structure in riser flows. The acceleration–velocity covariance arising from hydrodynamic forces can be decomposed into source and dissipation terms that appear in the granular temperature evolution equation, and these have already been quantified in the Stokes flow regime using a combination of kinetic theory closure and multipole expansion simulations. From PR-DNS data we show that the fluctuations in the particle acceleration that are aligned with fluctuations in the particle velocity give rise to a source term in the granular temperature evolution equation. This approach is used to quantify the hydrodynamic source and dissipation terms of granular temperature from PR-DNS results for freely-evolving gas–solid suspensions that are performed over a wide range of solid volume fraction ($0.1\leqslant {\it\phi}\leqslant 0.4$), Reynolds number based on the slip velocity between the solid and the fluid phase ($10\leqslant \mathit{Re}_{m}\leqslant 100$) and solid-to-fluid density ratio ($100\leqslant {\it\rho}_{p}/{\it\rho}_{f}\leqslant 2000$). The straightforward extension of drag law models does not give rise to any source in the granular temperature due to hydrodynamic effects. This motivates the development of better Lagrangian particle acceleration models that can be used in Lagrangian–Eulerian formulations of gas–solid flow. It is found that a Langevin equation for the increment in the particle velocity reproduces PR-DNS results for the stationary particle velocity autocorrelation in freely-evolving suspensions. Based on the data obtained from the simulations, the functional dependence of the Langevin model coefficients on solid volume fraction, Reynolds number and solid-to-fluid density ratio is obtained. This new Lagrangian particle acceleration model reproduces the correct steady granular temperature and can also be adapted to gas–solid flow computations using Eulerian moment equations.


2014 ◽  
Vol 627 ◽  
pp. 73-76
Author(s):  
A. Campagnolo ◽  
F. Berto ◽  
P. Lazzarin ◽  
M. Elices

In this paper a volume criterion based on a simple scalar quantity, the mean value of the strain energy (SED), has been used to assess the static strength of notched components made of Polymethylmethacrylate (PMMA). The local-strain-energy based approach has been applied to a well-documented set of experimental data recently reported in the literature. Data refer to blunt U-notched cylindrical specimens of commercial PMMA subjected to static loads and characterised by a large variability of notch tip radius (from 0.67 mm to 2.20 mm). Critical loads obtained experimentally have been compared with the theoretical ones, estimated by keeping constant the mean value of the strain energy in a well-defined small size volume. In addition, some new tests dealing with V-notched specimens with end holes have been carried out to investigate the effect of the notch opening angle.


2001 ◽  
Vol 448 ◽  
pp. 213-241 ◽  
Author(s):  
REGHAN J. HILL ◽  
DONALD L. KOCH ◽  
ANTHONY J. C. LADD

Theory and lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at small Reynolds numbers, on flows in simple cubic, face-centred cubic and random arrays of spheres. The drag force on the spheres, and hence the permeability of the arrays, is determined at small but finite Reynolds numbers, at solid volume fractions up to the close-packed limits of the arrays. For small solid volume fraction, the simulations are compared to theory, showing that the first inertial contribution to the drag force, when scaled with the Stokes drag force on a single sphere in an unbounded fluid, is proportional to the square of the Reynolds number. The simulations show that this scaling persists at solid volume fractions up to the close-packed limits of the arrays, and that the first inertial contribution to the drag force relative to the Stokes-flow drag force decreases with increasing solid volume fraction. The temporal evolution of the spatially averaged velocity and the drag force is examined when the fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. Theory for the short- and long-time behaviour is in good agreement with simulations, showing that the unsteady force is dominated by quasi-steady drag and added-mass forces. The short- and long-time added-mass coefficients are obtained from potential-flow and quasi-steady viscous-flow approximations, respectively.


2009 ◽  
Vol 618 ◽  
pp. 181-208 ◽  
Author(s):  
HAITAO XU ◽  
ROLF VERBERG ◽  
DONALD L. KOCH ◽  
MICHEL Y. LOUGE

We consider moderately dense bounded shear flows of agitated homogeneous inelastic frictionless solid spheres colliding in a gas between two parallel bumpy walls at finite particle Reynolds numbers, volume fractions between 0.1 and 0.4, and Stokes numbers large enough for collisions to determine the velocity distribution of the spheres. We adopt a continuum model in which constitutive relations and boundary conditions for the granular phase are derived from kinetic theory, and in which the gas contributes a viscous dissipation term to the fluctuation energy of the grains. We compare its predictions to recent lattice-Boltzmann (LB) simulations. The theory underscores the role played by the walls in the balances of momentum and fluctuation energy. When particle inertia is large, the solid volume fraction is nearly uniform, thus allowing us to treat the rheology using unbounded flow theory with an effective shear rate, while predicting slip velocities at the walls. When particle inertia decreases or fluid inertia increases, the solid volume fraction becomes increasingly heterogeneous. In this case, the theory captures the profiles of volume fraction, mean and fluctuation velocities between the walls. Comparisons with LB simulations allow us to delimit the range of parameters within which the theory is applicable.


Sign in / Sign up

Export Citation Format

Share Document