Hydrodynamic schooling of multiple self-propelled flapping plates

2018 ◽  
Vol 853 ◽  
pp. 587-600 ◽  
Author(s):  
Ze-Rui Peng ◽  
Haibo Huang ◽  
Xi-Yun Lu

While hydrodynamic interactions for aggregates of swimmers have received significant attention in the low Reynolds number realm ($Re\ll 1$), there has been far less work at higher Reynolds numbers, in which fluid and body inertia are involved. Here we study the collective behaviour of multiple self-propelled plates in tandem configurations, which are driven by harmonic flapping motions of identical frequency and amplitude. Both fast modes with compact configurations and slow modes with sparse configurations were observed. The Lighthill conjecture that orderly configurations may emerge passively from hydrodynamic interactions was verified on a larger scale with up to eight plates. The whole group may consist of subgroups and individuals with regular separations. Hydrodynamic forces experienced by the plates near their multiple equilibrium locations are all springlike restoring forces, which stabilize the orderly formation and maintain group cohesion. For the cruising speed of the whole group, the leading subgroup or individual plays the role of ‘leading goose’.

2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Markus Diehl ◽  
Christoph Schreiber ◽  
Jürg Schiffmann

Abstract In compressor design, a convenient way to save time is to scale an existing geometry to required specifications, rather than developing a new design. The approach works well when scaling compressors of similar size at high Reynolds numbers but becomes more complex when applied to small-scale machines. Besides the well-understood increase in surface friction due to increased relative surface roughness, two other main problems specific to small-scale turbomachinery can be specified: (1) the Reynolds number effect, describing the non-linear dependency of surface friction on Reynolds number and (2) increased relative tip clearance resulting from manufacturing limitations. This paper investigates the role of both effects in a geometric scaling process, as used by a designer. The work is based on numerical models derived from an experimentally validated geometry. First, the effects of geometric scaling on compressor performance are assessed analytically. Second, prediction capabilities of reduced-order models from the public domain are assessed. In addition to design point assessment, often found in other publications, the models are tested at off-design. Third, the impact of tip leakage on compressor performance and its Reynolds number dependency is assessed. Here, geometries of different scale and with different tip clearances are investigated numerically. Fourth, a detailed investigation regarding tip leakage driving mechanisms is carried out and design recommendations to improve small-scale compressor performance are provided.


Author(s):  
Chong Zhou ◽  
Joseph Majdalani ◽  
Christopher A. Dawson

This study provides procedural tools that can be used in concert with a computer algorithm to simulate the two-phase flow development of a higher density, tracer fluid inside a vertical tube. The problem arises in the context of a tracer fluid (e.g., a contrast agent) being injected into a neutral fluid such as blood. Based on cell fractions of tracer fluid obtained numerically, absorbency profiles are extrapolated. These are shown to compare favorably with laboratory x-ray samples realized under similar flow conditions. At low Reynolds numbers, one finds that a downward profile exhibits a more elongated frontal boundary than predicted by laminar flow theory of a single-phase, Newtonian fluid. The observed stretching of the denser fluid is confirmed experimentally and can be attributed to the combined effects of gravity assistance near the core and viscous resistance near the wall. In gravity-resisted flow, a reverse behavior is observed. A blunter frontal boundary is established during upward motion. In both cases, the role of gravity is weakened with successive increases in the Reynolds number. This behavior suggests the existence of a Reynolds number above which gravitational bias can be neglected in any flow orientation. It is hoped that this study will set the pace for a broader investigation of two-phase motion characterization of a tracer fluid under various flow conditions and orientations.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2020 ◽  
Vol 27 (40) ◽  
pp. 6815-6824 ◽  
Author(s):  
Yuan Jiang ◽  
Chuanshan Xu ◽  
Wingnang Leung ◽  
Mei Lin ◽  
Xiaowen Cai ◽  
...  

Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Abdallah Daddi-Moussa-Ider ◽  
Hartmut Löwen ◽  
Benno Liebchen

AbstractAs compared to the well explored problem of how to steer a macroscopic agent, like an airplane or a moon lander, to optimally reach a target, optimal navigation strategies for microswimmers experiencing hydrodynamic interactions with walls and obstacles are far-less understood. Here, we systematically explore this problem and show that the characteristic microswimmer-flow-field crucially influences the navigation strategy required to reach a target in the fastest way. The resulting optimal trajectories can have remarkable and non-intuitive shapes, which qualitatively differ from those of dry active particles or motile macroagents. Our results provide insights into the role of hydrodynamics and fluctuations on optimal navigation at the microscale, and suggest that microorganisms might have survival advantages when strategically controlling their distance to remote walls.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


Modern Italy ◽  
2016 ◽  
Vol 21 (2) ◽  
pp. 157-170
Author(s):  
Mila Milani

Long neglected by critical literature and historians, the Neapolitan journalSud(1945–1947) shared similar aims and objectives with the more famousIl Politecnico, although the two journals were inserted into and connected with lively yet different cultural environments and networks, which crucially influenced their outputs. Most notably, both journals paid significant attention to politically committed literary and essay translations. By combining an analysis of the journals’ articles and translations with the editors’ published and unpublished correspondence, the article reassesses the journals’ relationship and illuminates theengagementof the two editorial boards through translations. The analysis of the two intellectual networks and projects will re-establish the relevance ofSudin stimulating a transnational dialogue and will reconsider the role of translation in shaping the editors’ political identities. Finally, the article offers a geo-cultural perspective on post-war Italianimpegnoby charting its multiple, both national and transnational, identities.


2021 ◽  
Vol 62 (3) ◽  
Author(s):  
Nils Paul van Hinsberg

Abstract The aerodynamics of smooth and slightly rough prisms with square cross-sections and sharp edges is investigated through wind tunnel experiments. Mean and fluctuating forces, the mean pitch moment, Strouhal numbers, the mean surface pressures and the mean wake profiles in the mid-span cross-section of the prism are recorded simultaneously for Reynolds numbers between 1$$\times$$ × 10$$^{5}$$ 5 $$\le$$ ≤ Re$$_{D}$$ D $$\le$$ ≤ 1$$\times$$ × 10$$^{7}$$ 7 . For the smooth prism with $$k_s$$ k s /D = 4$$\times$$ × 10$$^{-5}$$ - 5 , tests were performed at three angles of incidence, i.e. $$\alpha$$ α = 0$$^{\circ }$$ ∘ , −22.5$$^{\circ }$$ ∘ and −45$$^{\circ }$$ ∘ , whereas only both “symmetric” angles were studied for its slightly rough counterpart with $$k_s$$ k s /D = 1$$\times$$ × 10$$^{-3}$$ - 3 . First-time experimental proof is given that, within the accuracy of the data, no significant variation with Reynolds number occurs for all mean and fluctuating aerodynamic coefficients of smooth square prisms up to Reynolds numbers as high as $$\mathcal {O}$$ O (10$$^{7}$$ 7 ). This Reynolds-number independent behaviour applies to the Strouhal number and the wake profile as well. In contrast to what is known from square prisms with rounded edges and circular cylinders, an increase in surface roughness height by a factor 25 on the current sharp-edged square prism does not lead to any notable effects on the surface boundary layer and thus on the prism’s aerodynamics. For both prisms, distinct changes in the aerostatics between the various angles of incidence are seen to take place though. Graphic abstract


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 492
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Mikhail A. Sheremet

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.


Sign in / Sign up

Export Citation Format

Share Document