scholarly journals Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble

2021 ◽  
pp. 1-15
Author(s):  
Ward J. J. van Pelt ◽  
Thomas V. Schuler ◽  
Veijo A. Pohjola ◽  
Rickard Pettersson

Abstract Projected climate warming and wettening will have a major impact on the state of glaciers and seasonal snow in High Arctic regions. Following up on a historical simulation (1957–2018) for Svalbard, we make future projections of glacier climatic mass balance (CMB), snow conditions on glaciers and land, and runoff, under Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios for 2019–60. We find that the average CMB for Svalbard glaciers, which was weakly positive during 1957–2018, becomes negative at an accelerating rate during 2019–60 for both RCP scenarios. Modelled mass loss is most pronounced in southern Svalbard, where the equilibrium line altitude is predicted to rise well above the hypsometry peak, leading to the first occurrences of zero accumulation-area ratio already by the 2030s. In parallel with firn line retreat, the total pore volume in snow and firn drops by as much as 70–80% in 2060, compared to 2018. Total refreezing remains largely unchanged, despite a marked change in the seasonal pattern towards increased refreezing in winter. Finally, we find pronounced shortening of the snow season, while combined runoff from glaciers and land more than doubles from 1957–2018 to 2019–60, for both scenarios.

Polar Biology ◽  
2013 ◽  
Vol 37 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Gitte Høj Jensen ◽  
Jesper Madsen ◽  
Fred A. Johnson ◽  
Mikkel P. Tamstorf

2017 ◽  
Vol 58 (75pt2) ◽  
pp. 99-109 ◽  
Author(s):  
Sayli Atul Tawde ◽  
Anil V. Kulkarni ◽  
Govindasamy Bala

ABSTRACTAn improved understanding of fresh water stored in the Himalaya is crucial for water resource management in South Asia and can be inferred from glacier mass-balance estimates. However, field investigations in the rugged Himalaya are limited to a few individual glaciers and short duration. Therefore, we have recently developed an approach that combines satellite-derived snowlines, a temperature-index melt model and the accumulation-area ratio method to estimate annual mass balance of glaciers at basin scale and for a long period. In this investigation, the mass balance of 146 glaciers in the Chandra basin, western Himalaya, is estimated from 1984 to 2012. We estimate the trend in equilibrium line altitude of the basin as +113 m decade−1and the mean mass balance as −0.61 ± 0.46 m w.e. a−1. Our basin-wide mass-balance estimates are in agreement with the geodetic method during 1999–2012. Sensitivity analysis suggests that a 20% increase in precipitation can offset changes in mass balance for a 1 °C temperature rise. A water loss of 18% of the total basin volume is estimated, and 67% for small and low-altitude glaciers during 1984–2012, indicating a looming water scarcity crisis for villages in this valley.


2017 ◽  
Vol 11 (1) ◽  
pp. 191-215 ◽  
Author(s):  
Torbjørn Ims Østby ◽  
Thomas Vikhamar Schuler ◽  
Jon Ove Hagen ◽  
Regine Hock ◽  
Jack Kohler ◽  
...  

Abstract. Estimating the long-term mass balance of the high-Arctic Svalbard archipelago is difficult due to the incomplete geodetic and direct glaciological measurements, both in space and time. To close these gaps, we use a coupled surface energy balance and snow pack model to analyse the mass changes of all Svalbard glaciers for the period 1957–2014. The model is forced by ERA-40 and ERA-Interim reanalysis data, downscaled to 1 km resolution. The model is validated using snow/firn temperature and density measurements, mass balance from stakes and ice cores, meteorological measurements, snow depths from radar profiles and remotely sensed surface albedo and skin temperatures. Overall model performance is good, but it varies regionally. Over the entire period the model yields a climatic mass balance of 8.2 cm w. e.  yr−1, which corresponds to a mass input of 175 Gt. Climatic mass balance has a linear trend of −1.4 ± 0.4 cm w. e.  yr−2 with a shift from a positive to a negative regime around 1980. Modelled mass balance exhibits large interannual variability, which is controlled by summer temperatures and further amplified by the albedo feedback. For the recent period 2004–2013 climatic mass balance was −21 cm w. e.  yr−1, and accounting for frontal ablation estimated by Błaszczyk et al.(2009) yields a total Svalbard mass balance of −39 cm w. e.  yr−1 for this 10-year period. In terms of eustatic sea level, this corresponds to a rise of 0.037 mm yr−1. Refreezing of water in snow and firn is substantial at 22 cm w. e.  yr−1 or 26 % of total annual accumulation. However, as warming leads to reduced firn area over the period, refreezing decreases both absolutely and relative to the total accumulation. Negative mass balance and elevated equilibrium line altitudes (ELAs) resulted in massive reduction of the thick (>  2 m) firn extent and an increase in the superimposed ice, thin (<  2 m) firn and bare ice extents. Atmospheric warming also leads to a marked change in the thermal regime, with cooling of the glacier mid-elevation and warming in the ablation zone and upper firn areas. On the long-term, by removing the thermal barrier, this warming has implications for the vertical transfer of surface meltwater through the glacier and down to the base, influencing basal hydrology, sliding and thereby overall glacier motion.


The Holocene ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 1350-1358 ◽  
Author(s):  
Andrew P Moran ◽  
Susan Ivy Ochs ◽  
Marcus Christl ◽  
Hanns Kerschner

A two-phased moraine system in the high Alpine valley of Lisenser Längental in the Stubai Alps of western Austria is located in an intermediate morphostratigraphic position constrained by ‘Egesen Stadial’ (Younger Dryas) moraines down valley and ‘Little Ice Age’ (‘LIA’) positions (modern times) up valley. The equilibrium line altitude (ELA) was about 50 m lower than during the ‘LIA’ when applying an accumulation area ratio of 0.67. Exposure dating of boulders with 10Be yields a mean age of 3750 ± 330 years for the more extensive outer moraine system and a single age of 3140 ± 280 years for the inner one. The ages correspond well to the ‘Loebben oscillation’, a sequence of multi-decadal to multi-centennial cooling phases at the onset of the late-Holocene, also recognized in other Alpine records. The climatic downturn was severe enough to cause small to medium-sized Alpine glaciers in the central Alps to advance significantly beyond their ‘LIA’ extent, but too short to trigger a similar reaction with large glaciers.


2015 ◽  
Vol 15 (16) ◽  
pp. 9681-9692 ◽  
Author(s):  
A. Massling ◽  
I. E. Nielsen ◽  
D. Kristensen ◽  
J. H. Christensen ◽  
L. L. Sørensen ◽  
...  

Abstract. Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both EBC/BC and sulfate was observed. Also, the correlation between BC and sulfate concentrations was confirmed based on the model results observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.74. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor, albeit significant source.


1990 ◽  
Vol 14 ◽  
pp. 329 ◽  
Author(s):  
Richard L. Armstrong

Mass-balance data for Blue Glacier are presented for the 31-year period 1956–86. The glacier location is strongly maritime with annual precipitation of 3500 to 5000 mm, most of which falls as winter snow. The low elevation of the glacier results in large amounts of summer ablation and thus significant annual mass exchange. Blue Glacier has been in approximate equilibrium with recent climate during the past 30 years with a slightly positive mean annual net balance of 0.3 m and a terminus advance of 150 m. Comparison with other glaciers in western North America indicates that this pattern of mass increase in response to recent climate is not typical but may be specific to a maritime location. Due to heavy amounts of winter snowfall, an accumulation area ratio of only 0.5 is sufficient to maintain a zero balance on Blue Glacier. A strong gradient of increasing snowfall with elevation contributes to a linear relationship between net balance and elevation throughout the total altitude range of the glacier. This relationship is consistent over the period of record and is not dependent on an overall net positive balance, as the pattern persists even during periods of strongly negative mass balance. A relationship between measured mass balance and equilibrium-line altitude provides a reasonable method to compute mass balance.


2002 ◽  
Vol 48 (160) ◽  
pp. 118-124 ◽  
Author(s):  
Louis Lliboutry

AbstractGlacier de Saint-Sorlin, French Alps, left terminal moraines at 1.3, 2.9 and 3.7 km ahead of the present terminus. According to proxy data and to historical maps, these were formed in the 19th, 18th and 17th centuries, respectively. A plateau at 2700–2625 m was then surrounded by ice but never became an accumulation area. This fact shows that the equilibrium-line altitude (ELA) on the glacier never dropped below 2300 m. The following simple models apply sufficiently to yield reliable estimations of past ELA: (1) a uniform and constant vertical gradient of the mass balance, down to the terminus; and (2) a plane bed, with a slope of 8.5° and a uniform width. Then in a steady situation the accumulation–area ratio is 1/2. Compared to the mean for 1956–72, at the onset of the Little Ice Age the balances were higher by 3.75 m ice a−1, and the ELA was 400 m lower. Correlations between 1956–72 balances and meteorological data suggest that during the melting season the 0°C isotherm was about 800 m lower, while the winter precipitation at low altitudes did not change. These correlations may have been different in the past, but an equal lowering of the ELA and of the 0°C isotherm, as assumed by several authors, seems excluded.


1992 ◽  
Vol 38 (128) ◽  
pp. 101-104 ◽  
Author(s):  
Anil V. Kulkarni

AbstractThe accumulation area ratio (AAR) for Himalayan glaciers representing zero mass balance is substantially lower than for North America and Europe. Regression analysis suggests 0.44 for the AAR representing zero mass balance in the western Himalaya. A good correlation was observed when this method was applied to individual glaciers such as Gara and Gor-Garang in Himachal Pradesh, India. The correlation coefficients (r), using 6 and 7 years of data, respectively, were 0.88 and 0.96 for Gara and Gor-Garang Glaciers, respectively. However, when data from six western Himalayan glaciers were correlated, the correlation was 0.74. The AAR was also estimated by using Landsat images which can be useful in obtaining a trend in mass balance for a large number of Himalayan glaciers for which very little information exists.A higher correlation was observed between equilibrium-line altitude (ELA) and mass balance. The field data from Gara and Gor-Garang Glaciers shows a high correlation coefficient, i.e. −0.92 and −0.94, respectively. The ELA values obtained from the Landsat satellite images combined with topographic maps suggest positive mass balance for the year 1986–87 and negative for 1987–88.


2018 ◽  
Vol 4 (4) ◽  
pp. 813-826 ◽  
Author(s):  
Florent Domine ◽  
Gilles Gauthier ◽  
Vincent Vionnet ◽  
Dominique Fauteux ◽  
Marie Dumont ◽  
...  

Cyclic population fluctuations are common in boreal and Arctic species but the causes of these cycles are still debated today. Among these species, lemmings are Arctic rodents that live and reproduce under the snow and whose large cyclical population fluctuations in the high Arctic impact the whole tundra food web. We explore, using lemming population data and snow modeling, whether the hardness of the basal layer of the snowpack, determined by rain-on-snow events (ROS) and wind storms in autumn, can affect brown lemming population dynamics in the Canadian high Arctic. Using a 7-year dataset collected on Bylot Island, Nunavut, Canada over the period 2003–2014, we demonstrate that liquid water input to snow is strongly inversely related with winter population growth (R2 ≥ 0.62) and to a lesser extent to lemming summer densities and winter nest densities (R2 = 0.29–0.39). ROS in autumn can therefore influence the amplitude of brown lemming population fluctuations. Increase in ROS events with climate warming should strongly impact the populations of lemmings and consequently those of the many predators that depend upon them. Snow conditions may be a key factor influencing the cyclic dynamics of Arctic animal populations.


Sign in / Sign up

Export Citation Format

Share Document