scholarly journals COSMOGENIC 14CO FOR ASSESSING THE OH-BASED SELF-CLEANING CAPACITY OF THE TROPOSPERE

Radiocarbon ◽  
2021 ◽  
pp. 1-19
Author(s):  
Carl A M Brenninkmeijer ◽  
Sergey S Gromov ◽  
Patrick Jöckel

ABSTRACT An application of radiocarbon (14C) in atmospheric chemistry is reviewed. 14C produced by cosmic neutrons immediately forms 14CO, which reacts with hydroxyl radicals (OH) to 14CO2. By this the distribution and seasonality (the lifetime of 14CO is ∼1 month) of the pivotal atmospheric oxidant OH can be established. 14CO measurement is a complex but unique application which benefitted enormously from the realization of AMS, bearing in mind that 14CO abundance is of the order of merely 10 molecules per cm3 not only provides 14CO an independent measure for the OH based self-cleansing capacity of the troposphere, but also enabled detection of 14C production due to high energy solar protons in 1989. Although its production takes place throughout the atmosphere and does not have the character of a point source, transport processes in the atmosphere affect the distribution of 14CO. Vertical mixing in the troposphere renders gradients in its production rate less critical, but considerable meridional gradients exist. One question has remained open, namely confirmation of calculated 14C production by direct measurement. A new sampling method is proposed. The conclusions are a guide to future work on 14CO in relation to OH and atmospheric transport.

2007 ◽  
Vol 7 (14) ◽  
pp. 3969-3987 ◽  
Author(s):  
M. G. Lawrence ◽  
T. M. Butler ◽  
J. Steinkamp ◽  
B. R. Gurjar ◽  
J. Lelieveld

Abstract. Megacities and other major population centers represent large, concentrated sources of anthropogenic pollutants to the atmosphere, with consequences for both local air quality and for regional and global atmospheric chemistry. The tradeoffs between the regional buildup of pollutants near their sources versus long-range export depend on meteorological characteristics which vary as a function of geographical location and season. Both horizontal and vertical transport contribute to pollutant export, and the overall degree of export is strongly governed by the lifetimes of pollutants. We provide a first quantification of these tradeoffs and the main factors influencing them in terms of "regional pollution potentials", metrics based on simulations of representative tracers using the 3-D global model MATCH (Model of Atmospheric Transport and Chemistry). The tracers have three different lifetimes (1, 10, and 100 days) and are emitted from 36 continental large point sources. Several key features of the export characteristics emerge. For instance, long-range near-surface pollutant export is generally strongest in the middle and high latitudes, especially for source locations in Eurasia, for which 17–34% of a tracer with a 10-day lifetime is exported beyond 1000 km and still remains below 1 km altitude. On the other hand, pollutant export to the upper troposphere is greatest in the tropics, due to transport by deep convection, and for six source locations, more than 50% of the total mass of the 10-day lifetime tracer is found above 5 km altitude. Furthermore, not only are there order of magnitude interregional differences, such as between low and high latitudes, but also often substantial intraregional differences, which we discuss in light of the regional meteorological characteristics. We also contrast the roles of horizontal dilution and vertical mixing in reducing the pollution buildup in the regions including and surrounding the sources. For some regions such as Eurasia, dilution due to long-range horizontal transport governs the local and regional pollution buildup; however, on a global basis, differences in vertical mixing are dominant in determining the pollution buildup both around and further downwind of the source locations.


2009 ◽  
Vol 9 (10) ◽  
pp. 3233-3252 ◽  
Author(s):  
J. J. Jin ◽  
K. Semeniuk ◽  
S. R. Beagley ◽  
V. I. Fomichev ◽  
A. I. Jonsson ◽  
...  

Abstract. Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM) are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and Aura Microwave Limb Sounder (Aura/MLS). Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs). CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi-biennial oscillation (QBO) in the upper stratosphere, whereas, the CMAM does not have QBO included. This study confirms that CMAM is able to simulate middle atmospheric transport processes reasonably well.


2008 ◽  
Vol 8 (4) ◽  
pp. 13063-13123 ◽  
Author(s):  
J. J. Jin ◽  
K. Semeniuk ◽  
S. R. Beagley ◽  
V. I. Fomichev ◽  
A. I. Jonsson ◽  
...  

Abstract. Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM) are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and Aura Microwave Limb Sounder (Aura/MLS). Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global distributions and the polar winter time evolutions of the CO, N2O, and CH4 measurements quite well. Generally, excellent agreement with measurements is found in CO monthly zonal mean profiles in the stratosphere and mesosphere for various latitudes and seasons. The difference between the simulations and the observations are generally within 30%, which is comparable with the difference between the instruments in the upper stratosphere and mesosphere. In general, the CO measurements also show an excellent agreement between themselves although MLS retrievals are noisier than other retrievals above 10 hPa (~32 km). The measurements also show large difference in the lower stratosphere and upper troposphere. Comparisons of N2O show that CMAM results usually have a less than 15% difference to the measurements in the lower and middle stratosphere, and the observations are consistent as well. However, the standard version of CMAM has a serious low bias in the upper stratosphere. The CMAM CH4 distribution is also close to the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. These negative biases can be reduced by introducing a vertical diffusion coefficient related to gravity wave drag. CO measurements from 2004 and 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs). CMAM also shows strong descent of air after SSWs, but further investigation is needed. In the tropics, CMAM captures the "tape recorder" (or annual oscillation) in the lower stratosphere and the semiannual oscillations (SAO) at the stratopause and mesopause shown in MLS CO and SMR N2O observations. The inter-annual variation of the SAO at the stratopause in SMR N2O observations also shows a biennial oscillation, but CMAM cannot does not reproduce this feature. However, this study confirms that CMAM is able to simulate middle atmospheric transport processes reasonably well.


2011 ◽  
Vol 8 (1) ◽  
pp. 17-25 ◽  
Author(s):  
C. E. Morris ◽  
D. C. Sands ◽  
M. Bardin ◽  
R. Jaenicke ◽  
B. Vogel ◽  
...  

Abstract. For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.


2008 ◽  
Vol 5 (1) ◽  
pp. 191-212 ◽  
Author(s):  
C. E. Morris ◽  
D. C. Sands ◽  
M. Bardin ◽  
R. Jaenicke ◽  
B. Vogel ◽  
...  

Abstract. For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 415
Author(s):  
Jordan C. Hanson

Phased array radar systems have a wide variety of applications in engineering and physics research. Phased array design usually requires numerical modeling with expensive commercial computational packages. Using the open-source MIT Electrogmagnetic Equation Propagation (MEEP) package, a set of phased array designs is presented. Specifically, one and two-dimensional arrays of Yagi-Uda and horn antennas were modeled in the bandwidth [0.1–5] GHz, and compared to theoretical expectations in the far-field. Precise matches between MEEP simulation and radiation pattern predictions at different frequencies and beam angles are demonstrated. Given that the computations match the theory, the effect of embedding a phased array within a medium of varying index of refraction is then computed. Understanding the effect of varying index on phased arrays is critical for proposed ultra-high energy neutrino observatories which rely on phased array detectors embedded in natural ice. Future work will develop the phased array concepts with parallel MEEP, in order to increase the detail, complexity, and speed of the computations.


2020 ◽  
Vol 105 (6) ◽  
pp. 795-802 ◽  
Author(s):  
Marion Louvel ◽  
Anita Cadoux ◽  
Richard A. Brooker ◽  
Olivier Proux ◽  
Jean-Louis Hazemann

Abstract The volcanic degassing of halogens, and especially of the heavier Br and I, received increased attention over the last 20 years due to their significant effect on atmospheric chemistry, notably the depletion of stratospheric ozone. While the effect of melt composition on halogen diffusion, solubility, or fluid-melt partitioning in crustal magma chambers has been thoroughly studied, structural controls on halogen incorporation in silicate melts remain poorly known, with only few studies available in simplified borosilicate or haplogranite compositions. Here, we demonstrate that high-energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) with a crystal analyzer spectrometer (CAS) is well-suited for the study of Br speciation in natural volcanic glasses which can contain lower Br concentrations than their laboratory analogs. Especially, HERFD-XAS results in sharper and better-resolved XANES and EXAFS features than previously reported and enables detection limits for EXAFS analysis down to 100 ppm when previous studies required Br concentrations above the 1000 ppm level. XANES and EXAFS analyses suggest important structural differences between synthetic haplogranitic glass, where Br is surrounded by Na and next-nearest oxygen neighbors, and natural volcanic glasses of basaltic to rhyodacitic compositions, where Br is incorporated in at least three distinct sites, surrounded by Na, K, or Ca. Similar environments, involving both alkali and alkaline earth metals have already been reported for Cl in Ca-bearing aluminosilicate glass and our study thus underlines that the association of Br with divalent cations (Ca2+) has been underestimated in the past due to the use of simplified laboratory analogs. Overall, similarities in Cl and Br structural environments over a large array of compositions (46–67 wt% SiO2) suggest that melt composition alone may not have a significant effect on halogen degassing and further support the coupled degassing of Cl and Br in volcanic systems.


2008 ◽  
Vol 8 (10) ◽  
pp. 2811-2832 ◽  
Author(s):  
K. Zhang ◽  
H. Wan ◽  
M. Zhang ◽  
B. Wang

Abstract. The radioactive species radon (222Rn) has long been used as a test tracer for the numerical simulation of large scale transport processes. In this study, radon transport experiments are carried out using an atmospheric GCM with a finite-difference dynamical core, the van Leer type FFSL advection algorithm, and two state-of-the-art cumulus convection parameterization schemes. Measurements of surface concentration and vertical distribution of radon collected from the literature are used as references in model evaluation. The simulated radon concentrations using both convection schemes turn out to be consistent with earlier studies with many other models. Comparison with measurements indicates that at the locations where significant seasonal variations are observed in reality, the model can reproduce both the monthly mean surface radon concentration and the annual cycle quite well. At those sites where the seasonal variation is not large, the model is able to give a correct magnitude of the annual mean. In East Asia, where radon simulations are rarely reported in the literature, detailed analysis shows that our results compare reasonably well with the observations. The most evident changes caused by the use of a different convection scheme are found in the vertical distribution of the tracer. The scheme associated with weaker upward transport gives higher radon concentration up to about 6 km above the surface, and lower values in higher altitudes. In the lower part of the atmosphere results from this scheme does not agree as well with the measurements as the other scheme. Differences from 6 km to the model top are even larger, although we are not yet able to tell which simulation is better due to the lack of observations at such high altitudes.


2009 ◽  
Vol 9 (8) ◽  
pp. 2873-2890 ◽  
Author(s):  
P. Y. Foucher ◽  
A. Chédin ◽  
G. Dufour ◽  
V. Capelle ◽  
C. D. Boone ◽  
...  

Abstract. Major limitations of our present knowledge of the global distribution of CO2 in the atmosphere are the uncertainty in atmospheric transport mixing and the sparseness of in situ concentration measurements. Limb viewing space-borne sounders, observing the atmosphere along tangential optical paths, offer a vertical resolution of a few kilometers for profiles, which is much better than currently flying or planned nadir sounding instruments can achieve. In this paper, we analyse the feasibility of obtaining CO2 vertical profiles in the 5–25 km altitude range from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, launched in August 2003), high spectral resolution solar occultation measurements. Two main difficulties must be overcome: (i) the accurate determination of the instrument pointing parameters (tangent heights) and pressure/temperature profiles independently from an a priori CO2 profile, and (ii) the potential impact of uncertainties in the temperature knowledge on the retrieved CO2 profile. The first difficulty has been solved using the N2 collision-induced continuum absorption near 4 μm to determine tangent heights, pressure and temperature from the ACE-FTS spectra. The second difficulty has been solved by a careful selection of CO2 spectral micro-windows. Retrievals using synthetic spectra made under realistic simulation conditions show a vertical resolution close to 2.5 km and accuracy of the order of 2 ppm after averaging over 25 profiles. These results open the way to promising studies of transport mechanisms and carbon fluxes from the ACE-FTS measurements. First CO2 vertical profiles retrieved from real ACE-FTS occultations shown in this paper confirm the robustness of the method and applicability to real measurements.


Sign in / Sign up

Export Citation Format

Share Document