Modelling a helicopter rotor’s response to wake encounters

2004 ◽  
Vol 108 (1079) ◽  
pp. 15-26 ◽  
Author(s):  
G. R. Whitehouse ◽  
R. E. Brown

In recent years, various strategies for the concurrent operation of fixed-and rotary-wing aircraft have been proposed as a means of increasing airport capacity. Some of these strategies will increase the likelihood of encounters with the wakes of aircraft operating nearby. Several studies now exist where numerical simulations have been used to assess the impact of encounters with the wakes of large transport aircraft on the safety of helicopter operations under such conditions. This paper contrasts the predictions of several commonly-used numerical simulation techniques when each is used to model the dynamics of a helicopter rotor during the same idealised wake encounter. In most previous studies the mutually-induced distortion of the wakes of the rotor and the interacting aircraft has been neglected, yielding the so-called ‘frozen vortex’ assumption. This assumption is shown to be valid only when the helicopter encounters the aircraft wake at high forward speed. At the low forward speeds most relevant to near-airfield operations, however, injudicious use of the frozen vortex assumption may lead to significant errors in predicting the severity of a helicopter’s response to a wake encounter.

Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


2016 ◽  
Vol 61 (4) ◽  
pp. 2057-2060
Author(s):  
J. Pieprzyca ◽  
P. Warzecha ◽  
T. Merder ◽  
M. Warzecha

Abstract The article presents experimental results on the impact of tundish flow regulator influencing the liquid steel flow course. The research was conducted based on the hybrid modelling methods understood as a complementary use of Computational Fluid Dynamics (CFD) methods and physical modelling. Dynamic development of numerical simulation techniques and accessibility to highly advanced and specialized software causes the fact that these techniques are commonly used for solving problems related to liquid flows by using analytical methods. Whereas, physical modelling is an important cognitive tool in the field of empirical identification of these phenomena. This allows for peer review and specification of the researched problems. By exploiting these relationships, a comparison of the obtained results was performed in the form of residence time distribution (RTD) curves and visualization of particular types of liquid steel flow distribution zones in the investigated tundish.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1070-1074
Author(s):  
Ming Xiao Xie ◽  
Ting Xu ◽  
Yin Cai

The seawater intrusion of the Gou River, China and the impact of Houshan Reservoir are studied using numerical simulations. The results show that the natural seawater intrusion length is 1.66km for Gou River estuary, and once the Houshan reservoir is constructed the intrusion length increases to 1.98km, which is 0.32km longer than the natural condition. At present, the highest salinity at the estuary is around 18‰, and recovers to fresh water environment in 3.0km. After the construction of the reservoir, the salinity value increase to 20‰ at the estuary. To around 2.0km from the estuary, the salinity recovers to the natural condition.


2017 ◽  
Vol 6 (1) ◽  
pp. 129
Author(s):  
Phanthoudeth Pongpanya ◽  
Takashi Sasaoka ◽  
Hideki Shimada ◽  
Sugeng Wahyudi

This paper aims to study the characteristics of surface subsidence induced by longwall mining under poor ground conditions in Indonesia by means of numerical simulation techniques using finite difference code “FLAC3D”. The effect of mining depth in cases of single panel and multi-panel longwall mining, the influence of panel and pillar widths, and the impact of backfilling material, were incorporated into the FLAC3D software. The simulated results indicated that the angle of draw and maximum surface subsidence were significantly associated with the depth of mining, the number of extracted panels, the width of panel and pillar, and the type of backfill. In single panel mining, the largest maximum surface subsidence is observed in case of the shallowest mining depth, and it gradually decreases as the depth increases. In contrast, the angle of draw increases with increasing the mining depth. In multi-panel mining, the angle of draw and maximum surface subsidence increase as the mining depth increases. Moreover, the angle of draw and maximum surface subsidence decrease when the narrow panel and large pillar widths are adopted, and the backfilling materials are applied.


2012 ◽  
Vol 27 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Lei Zhang ◽  
Zhaoxia Pu ◽  
Wen-Chau Lee ◽  
Qingyun Zhao

Abstract The impact of airborne Doppler radar data assimilation on improving numerical simulations of tropical cyclones (TCs) has been well recognized. However, the influence of radar data quality on the numerical simulation of tropical cyclones has not been given much attention. It is commonly assumed that higher quality radar data would be more beneficial to numerical simulations of TCs. This study examines the impact of the radar data quality control on assimilation of the airborne Doppler radar reflectivity and radial velocity observations in a numerical simulation of Typhoon Jangmi (2008). It is found that the quality of radar data has a strong influence on the numerical simulation of Typhoon Jangmi in terms of its track, intensity, and precipitation structures. Specifically, results suggest that a trade-off between the data quality and data coverage is necessary for different purposes in practical applications, as the higher quality data contribute to intensity forecast improvements, whereas data of lower quality but having better coverage are more beneficial to accurate track forecasting.


This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


Author(s):  
Dong Li ◽  
Ziming Xu ◽  
Ke Zhang ◽  
Zeyu Zhang ◽  
Jinxin Zhou ◽  
...  

Environmental crosswind can greatly affect the development of aircraft wake vortex pair. Previous numerical simulations and experiments have shown that the nonlinear vertical shear of the crosswind velocity can affect the dissipation rate of the aircraft wake vortex, causing each vortex of the vortex pair descent with different velocity magnitude, which will lead to the asymmetrical settlement and tilt of the wake vortex pair. Through numerical simulations, this article finds that uniform crosswind convection and linear vertical shear crosswind convection can also have an effect on the strength of the vortex. This effect is inversely proportional to the cube of the vortex spacing, so it is more intense on small separation vortex pair. In addition, the superposition of crosswind and vortex-induced velocities will lead to the asymmetrical pressure distribution around the vortex pair, which will also cause the tilt of the vortex pair. Furthermore, a new analysis method for wake vortex is proposed, which can be used to predict the vortex trajectory.


2021 ◽  
Vol 54 (7) ◽  
pp. 1-35
Author(s):  
Salonik Resch ◽  
Ulya R. Karpuzcu

Benchmarking is how the performance of a computing system is determined. Surprisingly, even for classical computers this is not a straightforward process. One must choose the appropriate benchmark and metrics to extract meaningful results. Different benchmarks test the system in different ways, and each individual metric may or may not be of interest. Choosing the appropriate approach is tricky. The situation is even more open ended for quantum computers, where there is a wider range of hardware, fewer established guidelines, and additional complicating factors. Notably, quantum noise significantly impacts performance and is difficult to model accurately. Here, we discuss benchmarking of quantum computers from a computer architecture perspective and provide numerical simulations highlighting challenges that suggest caution.


Author(s):  
E. Thilliez ◽  
S. T. Maddison

AbstractNumerical simulations are a crucial tool to understand the relationship between debris discs and planetary companions. As debris disc observations are now reaching unprecedented levels of precision over a wide range of wavelengths, an appropriate level of accuracy and consistency is required in numerical simulations to confidently interpret this new generation of observations. However, simulations throughout the literature have been conducted with various initial conditions often with little or no justification. In this paper, we aim to study the dependence on the initial conditions of N-body simulations modelling the interaction between a massive and eccentric planet on an exterior debris disc. To achieve this, we first classify three broad approaches used in the literature and provide some physical context for when each category should be used. We then run a series of N-body simulations, that include radiation forces acting on small grains, with varying initial conditions across the three categories. We test the influence of the initial parent body belt width, eccentricity, and alignment with the planet on the resulting debris disc structure and compare the final peak emission location, disc width and offset of synthetic disc images produced with a radiative transfer code. We also track the evolution of the forced eccentricity of the dust grains induced by the planet, as well as resonance dust trapping. We find that an initially broad parent body belt always results in a broader debris disc than an initially narrow parent body belt. While simulations with a parent body belt with low initial eccentricity (e ~ 0) and high initial eccentricity (0 < e < 0.3) resulted in similar broad discs, we find that purely secular forced initial conditions, where the initial disc eccentricity is set to the forced value and the disc is aligned with the planet, always result in a narrower disc. We conclude that broad debris discs can be modelled by using either a dynamically cold or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.


Sign in / Sign up

Export Citation Format

Share Document