The Static Aeroelastic Deformation of Slender Configurations

1961 ◽  
Vol 12 (3) ◽  
pp. 293-308 ◽  
Author(s):  
G. J. Hancock

SummaryBy consideration of a series of simple models the static aeroelasticity of conventional aircraft is first discussed and then extended to the integrated configuration combining fuselage, wing and tail. It is shown that, on the basis of linear aerodynamics, a maximum speed exists at which control is possible. Overall deformations and control forces become large at speeds approaching this critical condition. Part II, to be published, contains calculations on slender plate aircraft including non-linear aerodynamics.

Author(s):  
Andreas Müller ◽  
Shivesh Kumar

AbstractDerivatives of equations of motion (EOM) describing the dynamics of rigid body systems are becoming increasingly relevant for the robotics community and find many applications in design and control of robotic systems. Controlling robots, and multibody systems comprising elastic components in particular, not only requires smooth trajectories but also the time derivatives of the control forces/torques, hence of the EOM. This paper presents the time derivatives of the EOM in closed form up to second-order as an alternative formulation to the existing recursive algorithms for this purpose, which provides a direct insight into the structure of the derivatives. The Lie group formulation for rigid body systems is used giving rise to very compact and easily parameterized equations.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2092
Author(s):  
Simone Fiori

The aim of the present tutorial paper is to recall notions from manifold calculus and to illustrate how these tools prove useful in describing system-theoretic properties. Special emphasis is put on embedded manifold calculus (which is coordinate-free and relies on the embedding of a manifold into a larger ambient space). In addition, we also consider the control of non-linear systems whose states belong to curved manifolds. As a case study, synchronization of non-linear systems by feedback control on smooth manifolds (including Lie groups) is surveyed. Special emphasis is also put on numerical methods to simulate non-linear control systems on curved manifolds. The present tutorial is meant to cover a portion of the mentioned topics, such as first-order systems, but it does not cover topics such as covariant derivation and second-order dynamical systems, which will be covered in a subsequent tutorial paper.


1963 ◽  
Vol 14 (1) ◽  
pp. 75-104 ◽  
Author(s):  
G. J. Hancock

SummaryThe validity and applicability of the static margin (stick fixed) Kn,where as defined by Gates and Lyon is shown to be restricted to the conventional flexible aircraft. Alternative suggestions for the definition of static margin are put forward which can be equally applied to the conventional flexible aircraft of the past and the integrated flexible aircraft of the future. Calculations have been carried out on simple slender plate models with both linear and non-linear aerodynamic forces to assess their static stability characteristics.


Author(s):  
Connor J. Boss ◽  
Joonho Lee ◽  
Charles Carvalho de Aguiar ◽  
Jongeun Choi

This paper proposes a discrete-time, multi-time-scale estimation and control design for quadrotors in the presence of external disturbances and model uncertainties. Assuming that not all state measurements are available, they will need to be estimated. The sample-data Extended High-Gain Observers are used to estimate unmeasured states, system uncertainties, and external disturbances. Discretized dynamic inversion utilizes those estimates and deals with an uncertain principal inertia matrix. In the plant dynamics, the proposed control forces the rotational dynamics to be faster than the translational dynamics. Numerical simulations and experimental results verify the proposed estimation and control algorithm. All sensing and computation is done on-board the vehicle.


2016 ◽  
Vol 40 (3) ◽  
pp. 918-929 ◽  
Author(s):  
A Manonmani ◽  
T Thyagarajan ◽  
M Elango ◽  
S Sutha

A greenhouse system (GHS) is a closed structure that facilitates modified growth conditions to crops and provides protection from pests, diseases and adverse weather. However, a GHS exhibits non-linearity due to the interaction between the biological subsystem and the physical subsystem. Non-linear systems are difficult to control, particularly when their characteristics change with time. These systems are best handled with methods of computation intelligence, such as artificial neural networks (ANNs) and fuzzy systems. In the present work, the approximation capability of a neural network is used to model and control sufficient growth conditions of a GHS. An optimal neural network-based non-linear auto regressive with exogenous input (NARX) time series model is developed for a GHS. Based on the NARX model, two intelligent control schemes, namely a neural predictive controller (NPC) and non-linear auto regressive moving average (NARMA-L2) controller are proposed to achieve the desired growth conditions such as humidity and temperature for a better yield. Finally, closed-loop performances of the above two control schemes for servo and regulatory operations are analysed for various operating conditions using performance indices.


Sign in / Sign up

Export Citation Format

Share Document