Chloroplast thylakoids reduce glucose uptake and decrease intestinal macromolecular permeability

2011 ◽  
Vol 106 (6) ◽  
pp. 836-844 ◽  
Author(s):  
Caroline Montelius ◽  
Karolina Gustafsson ◽  
Björn Weström ◽  
Per-Åke Albertsson ◽  
Sinan Cem Emek ◽  
...  

Thylakoid membranes, derived from chloroplasts, have previously been shown to retard fat digestion and lower blood glucose levels after oral intake. The purpose of the present study was to investigate the effect of thylakoid membranes on the passage of methyl-glucose, dextran and ovalbumin over rat intestine in vitro using Ussing chambers. The results show that thylakoids retard the passage of each of the test molecules in a dose-dependent way. The thylakoids appear to be attached on the mucosal surface and a mechanism is suggested that the thylakoids delay the passage of the test molecules by sterical hindrance. The present results indicate that thylakoid membranes may be useful both to control intestinal absorption of glucose and to enhance the barrier function of the intestine.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaoxiang Xu ◽  
Yingjia Wei ◽  
Mian Khaqan Shah ◽  
Xiaoyu Wang ◽  
Junting Lin ◽  
...  

Active peptides have good effectiveness in controlling or preventing many diseases. Compound active peptides (CAP) obtained from animal, plant, and sea food proteins were used in this study to explore their effects on antioxidation, anti-inflammation, and antihyperglycemia in vitro and in vivo. The results demonstrated that 10 μg/mL CAP could increase cell viability (P<0.05) and decrease reactive oxygen species (ROS) levels and cell apoptosis (P<0.05) when WRL68 cells were induced by H2O2 for 6 h. Moreover, incubation with 20 μg/mL CAP for 6 h significantly increased cell viability and Bcl-2 expression level (P<0.05) and decreased expression levels of IL-6, IL-8, TNF-α, Bax, and Caspase 3 and the ratio of Bax/Bcl-2 (P<0.05) when swine jejunal epithelial cells (IPEC-J2) were induced by deoxynivalenol (DON). In addition, adding CAP individually or combined with Liuweidihuang pills (LDP, Chinese medicine) and low-dose glibenclamide could lower blood glucose levels in alloxan-induced hyperglycemic model mice. These results suggested that CAP was probably a beneficial ingredient for alleviating H2O2-induced oxidative stress and DON-induced cell inflammation and apoptosis and preventing hyperglycemia.


2021 ◽  
Vol 18 (1) ◽  
pp. 68-74
Author(s):  
Wirasti Wirasti ◽  
Titi Lestari ◽  
Isyti'aroh Isyti'aroh

An important treatment for type 2 diabetes is controlling blood glucose levels. α-amylase enzyme in the body plays a role in breaking down carbohydrates into starch. Control of the amylase enzyme is needed in diabetes cases Kremah plant (Alternanthera sessillis) is a plant whose leaves can be used to lower blood glucose levels because it contains secondary metabolites, one of which is flavonoids which can inhibit the α-amylase enzyme. The purpose of this study was to determine the activity and inhibition value of kremah leaves against the α-amylase enzyme. The method used in this research is the enzymatic reaction by measuring the intensity of the color using UV-Vis spectrophotometry. The IC50 value obtained by α-amylase enzyme inhibition was 101.89±7,21 μg / ml while the IC50 acarbose value was 127.17±4,42 μg / ml. These results indicate that kremah leaf extract has activity (hyperglycemia) by inhibiting complex carbohydrate hydrolyzing enzymes such as the α-inhibition enzyme α-Amylase which is good compared to acarbose because the IC50 value of the extract is smaller, so that the leaves of kremah has inhibiting of the α-amylase enzyme.


Author(s):  
Amine Azzane ◽  
Ayou Amssayef ◽  
Mohame Eddouks

Aims: The aim of the study was to evaluate the antihyperglycemic effect of Chenopodium quinoa. Background: Chenopodium quinoa is a pseudocereal plant with several medicinal properties. Objective: The goal of this investigation was to determine the antihyperglycemic activity of Chenopodium quinoa in both normal and streptozotocin(STZ)-induced diabetic rats. Methods: In this study, the effect of the aqueous extract of Chenopodium quinoa seeds (AECQS) (60 mg/kg) on blood glucose levels was evaluated in both normal and diabetic rats after a single (6 hours) and repeated oral administration (7 days of treatment). The effect of this herb on glucose tolerance and lipid profile was also studied. Additionally, histopathological examination of liver was carried out using the Hematoxylin-Eosin method. Furthermore, the in vitro antioxidant activity as well as a preliminary phytochemical screening and quantification of some secondary metabolites (phenolic compounds, flavonoids and tannins) were performed according to standard methods. Results: AECQS produced a significant lowering effect on plasma glucose levels in STZ-induced diabetic rats. In addition, this extract exhibited a remarkable amelioration on hepatic histopathology in diabetic rats. In addition, the extract exerted a remarkable antioxidant activity which could be due to the presence of some compounds found in this herb. Conclusion: In conclusion, this study demonstrates that the aqueous extract of Chenopodium quinoa seeds has a favorable effect in controlling diabetes mellitus.


2019 ◽  
Vol 20 (6) ◽  
pp. 1517 ◽  
Author(s):  
Kai Wang ◽  
Yu Su ◽  
Yuting Liang ◽  
Yanhui Song ◽  
Liping Wang

Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.


1994 ◽  
Vol 267 (1) ◽  
pp. F99-F105 ◽  
Author(s):  
K. Ohishi ◽  
M. I. Okwueze ◽  
R. C. Vari ◽  
P. K. Carmines

This study was designed to identify and localize defects in renal microvascular function during the hyperfiltration stage of diabetes mellitus. Male Sprague-Dawley rats were injected intravenously with 65 mg/kg streptozotocin (IDDM rats) or vehicle (sham rats). IDDM rats received insulin (3 U.kg-1.day-1) via an osmotic minipump; sham rats received diluent. During the ensuing 2-wk period, blood glucose levels averaged 89 +/- 2 mg/dl in 33 sham rats and 290 +/- 13 mg/dl in 37 IDDM rats. At the end of this period, inulin clearance was elevated in eight IDDM rats (1.43 +/- 0.17 ml.min-1.g kidney wt-1) compared with six sham rats (0.78 +/- 0.05 ml.min-1.g kidney wt-1). The remaining animals served as tissue donors for study of the renal microvasculature using the in vitro blood-perfused juxtamedullary nephron technique. Kidneys from sham and IDDM rats were perfused with homologous blood at a renal arterial pressure of 110 mmHg. Juxtamedullary single-nephron glomerular filtration rate was higher in IDDM rats (41.5 +/- 5.4 nl/min) than in sham rats (25.4 +/- 2.4 nl/min). Afferent arteriolar inside diameter was greater in IDDM rats (34 +/- 2 microns) than in sham rats (22 +/- 1 microns); however, efferent arteriolar diameter did not differ between groups. The afferent arteriolar vasoconstrictor response to norepinephrine (NE) was attenuated in IDDM rats, relative to sham rats, over a wide range of NE concentrations. In contrast, NE evoked similar degrees of efferent vasoconstriction in IDDM and sham rats.(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Rafael Grassi de Alcântara ◽  
Heidge Fukumasu ◽  
Paulo Cesar Fabricio Raspantini ◽  
Leonila Ester Reinert Raspantini ◽  
Caroline Joy Steel ◽  
...  

The consumption of composite flour, such as green banana and corn flour, is related to maintain stable blood glucose levels, due to high resistant starch levels. However, most of these studies have conducted analyses of unprocessed food such as flour. Therefore, this study aimed to evaluate the effect of baking on resistant starch concentration and digestion from bread produced with partial wheat flour substitution. Response surface methodology was used to evaluate bread physical-chemical characteristics, and then, sensorial and nutritional qualities of the bread were evaluated. The feasibility of incorporating 40% of corn flour was demonstrated, while incorporation of 20% produced bread with similar characteristics to the control; for green banana flour, these levels were 20 and 10%, respectively. Resistant starch levels of composite breads were also enhanced by in vitro analyses. On the other hand, in vivo blood glucose levels evidenced that the ingestion of breads produced with partial wheat flour substitution by green banana or corn flour promoted a more important peak in blood glucose levels in comparison with control bread, which was never previously presented in the literature. Bread ingestion rapidly increased the blood glucose levels of rats; once during the baking process, starch granules become gelatinized and therefore easily digestible. Furthermore, this study also highlighted the lack and need for future investigation of wheat flour-substituted baked goods, in order to better understand mechanical properties formation and also product digestibility.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rebecca J. Marshall ◽  
Pornthida Armart ◽  
Katina D. Hulme ◽  
Keng Yih Chew ◽  
Alexandra C. Brown ◽  
...  

ABSTRACT People with diabetes are two times more likely to die from influenza than people with no underlying medical condition. The mechanisms underlying this susceptibility are poorly understood. In healthy individuals, small and short-lived postprandial peaks in blood glucose levels occur. In diabetes mellitus, these fluctuations become greater and more frequent. This glycemic variability is associated with oxidative stress and hyperinflammation. However, the contribution of glycemic variability to the pathogenesis of influenza A virus (IAV) has not been explored. Here, we used an in vitro model of the pulmonary epithelial-endothelial barrier and novel murine models to investigate the role of glycemic variability in influenza severity. In vitro, a history of glycemic variability significantly increased influenza-driven cell death and destruction of the epithelial-endothelial barrier. In vivo, influenza virus-infected mice with a history of glycemic variability lost significantly more body weight than mice with constant blood glucose levels. This increased disease severity was associated with markers of oxidative stress and hyperinflammation both in vitro and in vivo. Together, these results provide the first indication that glycemic variability may help drive the increased risk of severe influenza in people with diabetes mellitus. IMPORTANCE Every winter, people with diabetes are at increased risk of severe influenza. At present, the mechanisms that cause this increased susceptibility are unclear. Here, we show that the fluctuations in blood glucose levels common in people with diabetes are associated with severe influenza. These data suggest that glycemic stability could become a greater clinical priority for patients with diabetes during outbreaks of influenza.


2017 ◽  
Vol 29 (7) ◽  
pp. 1401 ◽  
Author(s):  
A. M. Edwards ◽  
E. Z. Cameron

The differential allocation hypothesis suggests that a mother should adjust the sex of offspring in relation to her mate’s attractiveness, thereby increasing future reproductive fitness when her sons inherit the attractive traits. More attractive males have been shown to sire more sons, but it is possible that the sex ratio skew could be a result of paternal rather than maternal manipulation, which would be a more parsimonious explanation. We manipulated coital rate (an indicator of attractiveness) in laboratory mice and showed that males that mate more often have higher levels of glucose in their semen despite lower blood glucose levels. Since peri-conceptual glucose levels in utero increase male conceptus survival, this could result in male-biased sex ratios. The males that mated most also had more remaining X-chromosome-bearing-spermatozoa, suggesting depletion of Y-chromosome-bearing-spermatozoa during mating. We hypothesise that males may alter both seminal fluids and X : Y ratios in an ejaculate to influence subsequent sex ratios. Our results further support a paternal role in sex allocation.


2016 ◽  
Vol 174 (6) ◽  
pp. 717-726 ◽  
Author(s):  
R Martínez ◽  
C Fernández-Ramos ◽  
A Vela ◽  
T Velayos ◽  
A Aguayo ◽  
...  

Context Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous disease characterized by severe hypoglycemia caused by inappropriate insulin secretion by pancreatic β-cells. Objective To characterize clinically and genetically CHI patients in Spain. Design and methods We included 50 patients with CHI from Spain. Clinical information was provided by the referring clinicians. Mutational analysis was carried out for KCNJ11, ABCC8, and GCK genes. The GLUD1, HNF4A, HNF1A, UCP2, and HADH genes were sequenced depending on the clinical phenotype. Results We identified the genetic etiology in 28 of the 50 CHI patients tested: 21 had a mutation in KATP channel genes (42%), three in GLUD1 (6%), and four in GCK (8%). Most mutations were found in ABCC8 (20/50). Half of these patients (10/20) were homozygous or compound heterozygous, with nine being unresponsive to diazoxide treatment. The other half had heterozygous mutations in ABCC8, six of them being unresponsive to diazoxide treatment and four being responsive to diazoxide treatment. We identified 22 different mutations in the KATP channel genes, of which ten were novel. Notably, patients with ABCC8 mutations were diagnosed earlier, with lower blood glucose levels and required higher doses of diazoxide than those without a genetic diagnosis. Conclusions Genetic analysis revealed mutations in 56% of the CHI patients. ABCC8 mutations are the most frequent cause of CHI in Spain. We found ten novel mutations in the KATP channel genes. The genetic diagnosis is more likely to be achieved in patients with onset within the first week of life and in those who fail to respond to diazoxide treatment.


Sign in / Sign up

Export Citation Format

Share Document