scholarly journals Curcuma oil ameliorates hyperlipidaemia and associated deleterious effects in golden Syrian hamsters

2013 ◽  
Vol 110 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Vishal Singh ◽  
Manish Jain ◽  
Ankita Misra ◽  
Vivek Khanna ◽  
Minakshi Rana ◽  
...  

Essential oil components from turmeric (Curcuma longa L.) are documented for neuroprotective, anti-cancer, anti-thrombotic and antioxidant effects. The present study aimed to investigate the disease-modifying potential of curcuma oil (C. oil), a lipophilic component from C. longa L., in hyperlipidaemic hamsters. Male golden Syrian hamsters were fed a chow or high-cholesterol (HC) and fat-rich diet with or without C. oil (30, 100 and 300 mg/kg) for 28 d. In HC diet-fed hamsters, C. oil significantly reduced plasma total cholesterol, LDL-cholesterol and TAG, and increased HDL-cholesterol when compared with the HC group. Similar group comparisons showed that C. oil treatment reduced hepatic cholesterol and oxidative stress, and improved liver function. Hyperlipidaemia-induced platelet activation, vascular dysfunction and repressed eNOS mRNA expression were restored by the C. oil treatment. Furthermore, aortic cholesterol accumulation and CD68 expression were also reduced in the C. oil-treated group. The effect of C. oil at 300 mg/kg was comparable with the standard drug ezetimibe. Delving into the probable anti-hyperlipidaemic mechanism at the transcript level, the C. oil-treated groups fed the chow and HC diets were compared with the chow diet-fed group. The C. oil treatment significantly increased the hepatic expression of PPARα, LXRα, CYP7A1, ABCA1, ABCG5, ABCG8 and LPL accompanied by reduced SREBP-2 and HMGCR expression. C. oil also enhanced ABCA1, ABCG5 and ABCG8 expression and suppressed NPC1L1 expression in the jejunum. In the present study, C. oil demonstrated an anti-hyperlipidaemic effect and reduced lipid-induced oxidative stress, platelet activation and vascular dysfunction. The anti-hyperlipidaemic effect exhibited by C. oil seems to be mediated by the modulation of PPARα, LXRα and associated genes involved in lipid metabolism and transport.

2018 ◽  
Vol 7 ◽  
Author(s):  
Ryusei Uchio ◽  
Shinji Murosaki ◽  
Hiroshi Ichikawa

AbstractCurcuma longa, also known as turmeric, has long been used as a medicinal herb with various biological effects. A hot water extract of C. longa (WEC) has been reported to show antioxidant and anti-inflammatory activity, but its effect on hepatic inflammation is poorly understood. In the present study, to investigate the effect of WEC on non-alcoholic steatohepatitis, C57BL/6J mice were fed a low-methionine, choline-deficient diet with 0·175 % WEC (WEC group) or without WEC (control group) for 6 or 12 weeks. Although hepatic steatosis was similar in the WEC group and the control group, WEC suppressed the elevation of plasma aspartate aminotransferase and alanine aminotransferase, which are markers of hepatocellular damage. Compared with the control group, the WEC group had higher hepatic levels of reduced glutathione and superoxide dismutase, as well as a lower hepatic level of thiobarbituric acid-reactive substances. WEC also reduced hepatic expression of mRNA for inflammatory factors, including TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, F4/80 and CC motif chemokine receptor 2. Histological examination revealed that WEC suppressed hepatic recruitment of F4/80+ monocytes/macrophages and inhibited hepatic fibrosis. Furthermore, WEC inhibited hepatic expression of mRNA for molecules related to fibrosis, such as transforming growth factor-β, α-smooth muscle actin, type I collagen (α1-chain) and tissue inhibitor of matrix metalloproteinase-1. These findings suggest that dietary intake of WEC prevents the progression of non-alcoholic steatohepatitis by alleviating hepatic oxidative stress and inflammation.


2018 ◽  
Vol 24 (17) ◽  
pp. 1905-1911 ◽  
Author(s):  
Maria Luz Fernandez ◽  
Minu Sara Thomas ◽  
Bruno S. Lemos ◽  
Diana M. DiMarco ◽  
Amanda Missimer ◽  
...  

Background: Telomerase Activator 65 (TA-65), a compound extracted from Astragalus membranaceus has been used in Chinese traditional medicine for extending lifespan. Scarce information exists on the effects of TA-65 on parameters of metabolic syndrome (MetS). Methods: We recruited 40 patients with MetS to determine the effects of TA-65 on dyslipidemias, hypertension, and oxidative stress in this at-risk population. The study was a double-blind, randomized crossover design in which patients were allocated to consume either 16 mg daily of a TA-65 supplement or a placebo for 12 weeks. Following a 3-week washout, participants were allocated to the alternate treatment for an additional 12 weeks. Anthropometric and biological markers were measured at the end of each treatment. Plasma lipids, glucose, CReactive Protein (CRP), liver enzymes, and glycosylated hemoglobin were measured using a Cobas c-111. Inflammatory cytokines were measured by Luminex technology and markers of oxidative stress by the use of spectroscopy. Results: Compared to the placebo period, HDL cholesterol (HDL-C) was higher while body mass index, waist circumference, and the LDL/HDL ratio were lower (p < 0.05) during TA-65 treatment. In addition, plasma tumor necrosis factor-α (TNF-α) was lower during the TA-65 period (p< 0.05). Positive correlations were observed in changes between the placebo and the TA-65 periods in HDL-C and CRP (r = -0.511, p < 0.01), alanine aminotransferase (r = -0.61, p < 0.001) and TNF-α (r = -0.550, p < 0.001) suggesting that the favorable changes observed in HDL were associated with decreases in inflammation. Conclusion: TA-65 improved key markers of cardiovascular disease risk, which were also associated with reductions in inflammation.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yeni Lim ◽  
Oran Kwon

Abstract Objectives Increasing attention has been paid to a range of botanical food supplement that help to maintain vascular health. Multiple components in botanical foods are expected to be working in concert with various targets. In a previous our animal study, Phellinus baumii and Salvia miltiorrhiza Bunge (PS) ameliorated endothelial and vascular dysfunction in a platelet activation rat model. This study aimed to provide the components, target molecules, phenotypes, signaling pathways, and investigate the mechanism of PS on vascular health. Methods Network biology analysis was based on the data from two clinical trials. The first clinical trial was performed in healthy subjects using high-fat-induced vascular dysfunction model. The second clinical trial was performed in healthy smokers. Differential markers obtained from clinical data, Affymetrix microarray, metabolomics, together with ingredient of PS, were mapped onto the network platform termed the context-oriented directed associations. A network of “component-target-phenotype-pathway” was constructed. Results The resulting vascular health network demonstrates that the components of PS are linked various target molecules for adhesion molecule production, platelet activation, endothelial inflammation, vascular dilation, and mitochondrial metabolism and detoxification, implicated with various metabolic pathways. Conclusions Using network biology methods, this study revealed the components and their target molecules, phenotypes, signaling pathways and provided wider information to support the synergistic mechanisms of PS on vascular health. Funding Sources This research was funded by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science & ICT and the BK21PLUS of the National Research Foundation.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jee-Yun Park ◽  
Hee-Young Sohn ◽  
Young Ho Koh ◽  
Chulman Jo

AbstractCurcumin, a phytochemical extracted from Curcuma longa rhizomes, is known to be protective in neurons via activation of Nrf2, a master regulator of endogenous defense against oxidative stress in cells. However, the exact mechanism by which curcumin activates Nrf2 remains controversial. Here, we observed that curcumin induced the expression of genes downstream of Nrf2 such as HO-1, NQO1, and GST-mu1 in neuronal cells, and increased the level of Nrf2 protein. Notably, the level of p62 phosphorylation at S351 (S349 in human) was significantly increased in cells treated with curcumin. Additionally, curcumin-induced Nrf2 activation was abrogated in p62 knockout (−/−) MEFs, indicating that p62 phosphorylation at S351 played a crucial role in curcumin-induced Nrf2 activation. Among the kinases involved in p62 phosphorylation at S351, PKCδ was activated in curcumin-treated cells. The phosphorylation of p62 at S351 was enhanced by transfection of PKCδ expression plasmid; in contrast, it was inhibited in cells treated with PKCδ-specific siRNA. Together, these results suggest that PKCδ is mainly involved in curcumin-induced p62 phosphorylation and Nrf2 activation. Accordingly, we demonstrate for the first time that curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at S351.


2021 ◽  
Vol 165 ◽  
pp. 35
Author(s):  
Rebeca Osca-Verdegal ◽  
Jesús Beltrán-García ◽  
Ana B. Paes ◽  
Elena Nacher-Sendra ◽  
Federico V. Pallardó ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Maria Murta Santi ◽  
Paula Alves Silva ◽  
Isabella Fernandes Martins Santos ◽  
Silvane Maria Fonseca Murta

Abstract Background Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Results We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite. Conclusions The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance. Graphic Abstract


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
I Ikonomidis ◽  
K Katogiannis ◽  
D Vlastos ◽  
G Kostelli ◽  
K Kourea ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Aim/Introduction: Heat-not-burn cigarette (HNBC) constitutes a non-combustible smoke product. Purpose We compare the effects of heat-not-burn and conventional cigarettes on coronary flow, myocardial and vascular function, platelet activation and oxidative stress. Methods We compared the effects of HNBC to those of tobacco cigarette (TCig), on arterial stiffness, oxidative stress, and platelet activation, acutely and after 1 month of switching to HNBC, as well as on endothelial, myocardial, and coronary function after 1 month of switching to HNBC. In the acute study, 50 smokers were randomized into smoking a single Tcig or an HNBC and after 60 minutes were crossed over to the alternate smoking (HNBC or Tcig). For the chronic phase, 75 smokers were examined. Of those, 50 were switched to HNBC and 25 continued Tcig for 1 month. Pulse wave velocity (PWV) and biomarkers [malondialdehyde (MDA), protein carbonyls (PC), and thromboxane B2 (TXB2)] were assessed in the acute and chronic study. Myocardial deformation [global longitundinal strain (GLS), myocardial work index (GWI) and wasted myocardial work (GWW)], coronary flow reserve (CFR) by Doppler echocardiography, total arterial compliance (TAC), and flow-mediated dilation (FMD) were additionally assessed in the chronic study. Results Compared to baseline, TCig smoking acutely increased exhaled CO, PWV, MDA, and TxB2 (p &lt; 0.05), while no changes were observed after HNBC. Compared to resuming Tcig smoking, switching to HNBC for 1 month improved CO (mean change: -55% vs -2.4%), FMD ( +55% vs +15%), CFR (+46% vs +4%), TAC (+9% vs -0.5%), GLS (+6% vs +1%), GWW (-19% vs +0.5%), MDA (-19% vs 1 %), and TxB2 (-12% vs 4%) (p &lt; 0.05 for all comparisons). Conclusions HNBCs exert a less detrimental effect on vascular, cardiac and platelet function than combustible tobacco.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Kavita Shirsath ◽  
Apeksha Joshi ◽  
Aliasgar Vohra ◽  
Ranjitsinh Devkar

Abstract Background Circadian disruption is often associated with aggravation of atherosclerosis; however, the pathophysiological mechanisms underlying atherogenic initiation in normolipidemic diet remains unclear. Most of the studies done for understanding circadian disruption induced atherosclerosis have been carried out in murine model of hyperlipidemia induced atherosclerosis. The present study investigates pro-atherogenic events in response to chronic photoperiodic manipulation induced chronodisruption (PMCD) in C57BL/6J mice fed with laboratory chow diet. Results The results were compared with atherogenic initiation induced by high fat high fructose (HFHF) diet. The combined effects of HFHF and PMCD on atherogenic initiation were also investigated for possible synergy of both variants. The HFHF and HFHF+PMCD groups recorded increments in body weight gains and serum lipid parameters (TC, TG, LDL-cholesterol, VLDL) and a decrement in HDL-cholesterol as compared to the control group. However, PMCD group recorded body weight gain similar to that of the control group, but the serum lipid parameters (TG and VLDL) were significantly elevated and the HDL levels were lowered. However, prominent hypertrophic remodeling, higher collagen deposition, and elastin derangement, along with endothelial dysfunction, its activation, and macrophage infiltration, were observed in thoracic aorta of all the three experimental groups. But the mRNA and immunoblots of heat shock protein 60 (HSP60) in thoracic aorta was found to be maximum in PMCD followed by HFHF and HFHF+PMCD groups. Conclusion Laboratory chow feeding coupled with photoperiodic manipulation mediated chronodisruption overexpress HSP60 that in turn plays a central role in PMCD mediated pro-atherogenic remodeling in thoracic aorta of C57BL/6J mice.


2021 ◽  
Vol 22 (3) ◽  
pp. 1296
Author(s):  
Yue Ruan ◽  
Subao Jiang ◽  
Adrian Gericke

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


Sign in / Sign up

Export Citation Format

Share Document