scholarly journals Prediction and validation of total and regional skeletal muscle volume using B-mode ultrasonography in Japanese prepubertal children

2015 ◽  
Vol 114 (8) ◽  
pp. 1209-1217 ◽  
Author(s):  
Taishi Midorikawa ◽  
Megumi Ohta ◽  
Yuki Hikihara ◽  
Suguru Torii ◽  
Shizuo Sakamoto

AbstractVery few effective field methods are available for accurate, non-invasive estimation of skeletal muscle volume (SMV) and mass in children. We aimed to develop regression-based prediction equations for SMV, using ultrasonography, in Japanese prepubertal children, and to assess the validity of these equations. In total, 145 healthy Japanese prepubertal children aged 6–12 years were randomly divided into two groups: the model development group (sixty boys, thirty-seven girls) and the validation group (twenty-nine boys, nineteen girls). Reference data in the form of contiguous MRI with 1-cm slice thickness were obtained from the first cervical vertebra to the ankle joints. The SMV was calculated by the summation of digitised cross-sectional areas. Muscle thickness was measured using B-mode ultrasonography at nine sites in different regions. In the model development group, strong, statistically significant correlations were observed between the site-matched SMV (total, arms, trunk, thigh and lower legs) measured by MRI and the muscle thickness×height measures obtained by ultrasonography, for both boys and girls. When these SMV prediction equations were applied to the validation groups, the measured total and regional SMV were also very similar to the values predicted for boys and girls, respectively. With the exception of the trunk region in girls, the Bland–Altman analysis for the validation group did not indicate any bias for either boys or girls. These results suggest that ultrasonography-derived prediction equations for boys and girls are useful for the estimation of total and regional SMV.

2008 ◽  
Vol 101 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Taishi Midorikawa ◽  
Kiyoshi Sanada ◽  
Aiko Yoshitomi ◽  
Takashi Abe

The purpose of the present study was to investigate whether ultrasound-derived prediction equations for estimating total and regional skeletal muscle (SM) mass in adults are applicable for prepubertal children and adolescents. Ten Japanese prepubertal children and twenty-one adolescents volunteered for the study. Contiguous MRI images with a 1 cm slice thickness were obtained from the first cervical vertebra to the ankle joints as reference data. The SM volume was calculated from the summation of digitised cross-sectional areas. The regional SM volume was determined by anatomical landmarks visible in the scanned images. The volume units were converted into mass by an assumed SM density (1·041 g/cm3). Muscle thickness was measured by B-mode ultrasound at nine sites on different muscles (lateral forearm, anterior and posterior upper arm, abdomen, subscapular, anterior and posterior thigh, anterior and posterior lower leg). Total and regional SM mass was estimated using adult prediction equations. Mean values between measured and predicted total and regional segments of SM mass were not significantly different for adolescents, but were for prepubertal children. There was a relatively large range of the 95 % limits of agreement both in prepubertal children and adolescents. These results suggest that the adult ultrasound-derived prediction equations are useful for estimating total and regional SM mass for adolescents at the group level, but the relatively high degree of variability suggested limited reliability at the individual level both in prepubertal children and adolescents.


2011 ◽  
Vol 106 (6) ◽  
pp. 944-950 ◽  
Author(s):  
Taishi Midorikawa ◽  
Megumi Ohta ◽  
Yuki Hikihara ◽  
Suguru Torii ◽  
Michael G. Bemben ◽  
...  

The present study was performed to develop regression-based prediction equations for fat mass by ultrasound in Japanese children and to investigate the validity of these equations. A total of 127 healthy Japanese pre-pubertal children aged 6–12 years were randomly separated into two groups: the model development group (fifty-four boys and forty-four girls) and the validation group (eighteen boys and eleven girls). Total body, trunk, arm and leg fat masses were initially determined by dual-energy X-ray absorptiometry (DXA, Delphi A-QDR whole-body scanner; Hologic, Inc., Bedford, MA, USA). Then, fat thickness was measured by B-mode ultrasound (5 MHz scanning head) at nine sites (arm: lateral forearm, anterior and posterior upper arm; trunk: abdomen and subscapular; leg: anterior and posterior thigh, anterior and posterior lower leg). Regression analyses were used to describe the relationships between the site-matched fat masses (total body, arm, trunk and leg) obtained by DXA and ultrasound in the development group. When these fat mass prediction equations were applied to the validation group, the measured total and regional fat mass was very similar to the predicted fat mass (mean difference calculated as predicted −  measured fat mass ± 2 sd; total body 0·1 (sd 0·5) kg, arm 0·1 (sd 0·3) kg, trunk − 0·1 (sd 0·3) kg, leg 0·1 (sd 0·5) kg for boys; total body 0·5 (sd 1·3) kg, arm 0·0 (sd 0·3) kg, trunk 0·1 (sd 0·8) kg, leg 0·3 (sd 0·6) kg for girls), and the Bland–Altman analysis did not indicate a bias. These results suggest that ultrasound-derived prediction equations for boys and girls are useful for estimating total and regional fat mass.


2021 ◽  
Vol 40 (1) ◽  
Author(s):  
Masashi Taniguchi ◽  
Yosuke Yamada ◽  
Masahide Yagi ◽  
Ryusuke Nakai ◽  
Hiroshige Tateuchi ◽  
...  

Abstract Background The primary aim of this study was to investigate whether using the extracellular water/intracellular water (ECW/ICW) index and phase angle combined with segmental-bioimpedance analysis (BIA) improved the model fitting of skeletal muscle volume (SMV) estimation. The secondary aim was to compare the accuracy of segmental-BIA with that of ultrasound for estimating the quadriceps SMV measured with MRI. Methods Seventeen young men (mean age, 23.8 ± 3.3 years) participated in the study. The T-1 weighted images of thigh muscles were obtained using a 1.5 T magnetic resonance imaging (MRI) scanner. Thigh and quadriceps SMVs were calculated as the sum of the products of anatomical cross-sectional area and slice thickness of 6 mm across all slices. Segmental-BIA was applied to the thigh region, and data on the 50-kHz bioelectrical impedance (BI) index, ICW index, ECW/ICW index, and phase angle were obtained. The muscle thickness index was calculated as the product of the mid-thigh muscle thickness, determined using ultrasound, and thigh length. The standard error of estimate (SEE) of the regression equation was calculated to determine the model fitting of SMV estimation and converted to %SEE by dividing the SEE values by the mean SMV. Results Multiple regression analysis indicated that the combination of 50-kHz BI and the ECW/ICW index or phase angle was a significant predictor when estimating thigh SMV (SEE = 7.9 and 8.1%, respectively), but were lower than the simple linear regression (SEE = 9.4%). The ICW index alone improved the model fitting for the estimation equation (SEE = 7.6%). The model fitting of the quadriceps SMV with the 50-kHz BI or ICW index was similar to that with the skeletal muscle thickness index measured using ultrasound (SEE = 10.8, 9.6 and 9.7%, respectively). Conclusions Combining the traditionally used 50-kHz BI index with the ECW/ICW index and phase angle can improve the model fitting of estimated SMV measured with MRI. We also showed that the model suitability of SMV estimation using segmental-BIA was equivalent to that on using ultrasound. These data indicate that segmental-BIA may be a useful and cost-effective alternative to the gold standard MRI for estimating SMV.


2021 ◽  
Vol 12 ◽  
pp. 67
Author(s):  
Masahito Katsuki ◽  
Norio Narita ◽  
Keisuke Sasaki ◽  
Yoshimichi Sato ◽  
Yasuhiro Suzuki ◽  
...  

Background: Skeletal muscle mass is an important factor for various diseases’ outcomes. The psoas muscle cross-sectional area on the abdominal computed tomography (CT), gait speed, and handgrip strength is used to measure it. However, it is difficult to measure the neurological patients’ muscle mass or function because (1) we do not perform abdominal CT. (2) Such patients have impaired consciousness, gait disturbance, paresis, and need of rest. Temporal muscle thickness (TMT) on magnetic resonance imaging (MRI) is now attractive for skeletal muscle volume indicator, but the reference values are not established. We herein investigated the standard value of the Japanese TMT using the brain check-up database by MRI. Methods: We retrospectively investigated 360 Japanese individuals from two institutions between 2017 and 2019. We measured TMT on the T1-weighted images in the previously reported way. The associations between TMT and other variables were analyzed. Results: TMT of 214 women and 146 men, ranging from 35 to 84 years old, was investigated. TMT ranged from 3.69 to 16.90 mm. Mean TMT values were significantly higher in men compared to women except for the over 70-year-old cohort. TMT was correlated to weight and body mass index in both sexes. Conclusion: This is the first retrospective study on the standard TMT values from the Japanese brain check-up database. Our results were just reference values, but these would be useful for further investigation in other neurosurgical and neurological diseases regarding muscle volume or sarcopenia.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rasmus Liegnell ◽  
Fredrik Wessman ◽  
Adel Shalabi ◽  
Marita Harringe

Abstract Background The amount of muscle volume (MV) varies between individuals and is important for health, well-being and performance. Therefore, the monitoring of MV using different imaging modalities is important. Magnetic resonance imaging (MRI) is considered the gold standard, but is not always easily accessible, and the examinations are expensive. Ultrasonography (US) is a much less expensive imaging method widely used to measure changes in muscle thickness (MT). Whether MT may translate into MV needs further investigation. Purpose The aim of this review is to clarify whether US-derived equations based on MT predict MV based on MRI. Methods A systematic literature review was conducted according to the PRISMA statement, searching the electronic databases PubMed, CINAHL and Web of Science, for currently published equations to estimate MV with US. Results The literature search resulted in 363 citations. Twelve articles met the eligibility criteria. Ten articles scored eight out of eleven on QUADAS and two scored nine. Thirty-six prediction equations were identified. R values ranged between 0.53 and 0.961 and the standard error of the estimate (SEE) ranged between 6 and 12% for healthy adult populations, and up to 25.6% for children with cerebral palsy. Eight studies evaluated the results with a Bland–Altman plot and found no systematic errors. The overall strength and quality of the evidence was rated “low quality” as defined by the GRADE system. Conclusions The validity of US-derived equations based on MT is specific to the populations from which it is developed. The agreement with MV based on MRI is moderate with the SEE ranging between 6 and 12% in healthy adult populations. Suggestions for future research include investigations as to whether testing positions or increasing the number of measuring sites could improve the validity for prediction equations.


2020 ◽  
Author(s):  
Yun Im Lee ◽  
Ryoung-Eun Ko ◽  
Joonghyun Ahn ◽  
Keumhee Carriere ◽  
Jeong-Am Ryu

Abstract We investigated whether skeletal muscle mass estimated via brain computed tomography (CT) can be used to predict neurological outcomes in neurocritically ill patients. Adult patients who were admitted to the neurosurgical intensive care unit (ICU) from January 2010 to September 2019 were eligible. We included patients who were hospitalized in the neurosurgical ICU for more than 7 days. Cross-sectional areas of paravertebral muscle at the first cervical vertebra level (C1-CSA) and temporalis muscle thickness (TMT) on brain CT were measured to evaluate skeletal muscle mass. Primary outcome was Glasgow Outcome Scale score at 3 months. Change of C1-CSA (adjusted odds ratio [OR]: 1.36, 95% confidence interval [CI]: 1.054–1.761) and change of TMT (adjusted OR: 1.27, 95% CI: 1.028–1.576) were significantly associated with poor neurological outcome (Hosmer–Lemeshow test, Chi-square = 11.4, df = 8, p = 0.178) with areas under the curve of 0.803 (95% CI 0.740–0.866) using 10-fold cross validation method. Especially, risk of poor neurologic outcome was proportional to changes of C1-CSA and TMT. In this study, the follow-up skeletal muscle mass at first week from ICU admission, based on changes in C1-CSA and TMT, was associated with neurological prognosis in neurocritically ill patients.


2012 ◽  
Vol 21 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Madoka Ogawa ◽  
Naotoshi Mitsukawa ◽  
Michael G. Bemben ◽  
Takashi Abe

Context:Previous studies investigated the relationship between ultrasound-derived anatomical muscle thickness (MTH) and individual muscle cross-sectional area (CSA) and muscle volume in several limb and trunk muscles; however, the adductor muscle that contributes to hip adduction and pelvic stabilization, as well as balance ability, has not been studied.Objective:To examine the relationship between MTH of the lower, middle, and upper thigh measured by B-mode ultrasound and the muscle CSA and volume of adductor muscle obtained by magnetic resonance imaging (MRI) to confirm the possibility of predicting adductor muscle CSA/volume using ultrasound-derived MTH.Setting:University research laboratory.Subjects:10 men and 10 women (20–41 y old) volunteered to participate in this study.Main Outcome Measures:A series of continuous muscle CSAs along the thigh were measured by MRI scans (1.5-T scanner, GE Signa). In each slice, the anatomical CSA of the adductors was analyzed, and the muscle volume was calculated by multiplying muscle CSA by slice thickness. Thigh MTH was measured by B-mode ultrasound (Aloka SSD-500) at 5 sites (anterior 30%, 50%, and 70% and posterior 50% and 70% of thigh length).Results:A strong correlation was observed between anterior 30% MTH and 30% adductor CSA in men (r = .845, P < .002) and women (r = .952, P < .001) and in both groups combined (r = .922, P < .001). Anterior 30% MTH was also strongly correlated to adductor muscle volume when combined with thigh length (n = 20, r = .949, P < .001). However, there were moderate or nonsignificant correlations between anterior and posterior 50% and 70% MTH and adductor muscle CSA/volume.Conclusions:The results suggest that MTH in the upper portion of anterior thigh best reflects adductor muscle CSA or muscle volume, while the lower portions of the anterior and posterior sites are least likely to predict adductor muscle size.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joseph J. Bass ◽  
Edward J. O. Hardy ◽  
Thomas B. Inns ◽  
Daniel J. Wilkinson ◽  
Mathew Piasecki ◽  
...  

ObjectiveDisuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms.MethodSeven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted.ResultsTA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (–2.8 ± 1.4%, p &lt; 0.05) and muscle thickness decreased (−12.9 ± 1.6%, p &lt; 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged.ConclusionThe use of this unique “aRaS” paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA.


2020 ◽  
Author(s):  
Rasmus Liegnell ◽  
Fredrik Wessman ◽  
Adel Shalabi ◽  
Marita Harringe

Abstract Background: The amount of muscle mass or muscle volume (MV) varies between individuals and is important for health, wellbeing, and performance. Imaging is a useful tool to monitor MV, magnetic resonance imaging (MRI) is considered gold standard. MRI are not always easily accessible, and the measurements are expensive, therefore ultrasonography (US) has become a more accessible method for estimating MV. Methods: A systematic literature review was conducted in the electronic databases PubMed, CINHAL and Web of Science with the purpose of collecting the current published equations to estimate MV with US and answering the following question: How well does US derived equations based on muscle thickness (MT) predict MV based on MRI? Results: The literature search resulted in 363 citations. Twelve articles met the eligibility criteria and were included. Ten articles scored eight out of eleven on the QUADAS score and two scored nine out of eleven. 36 different prediction equations were identified. Correlations were good, r values ranged between 0.53-0.961 and the standard error of estimates (SEE) ranged between 6-25.6%. Eight studies did further analysis with a Bland-Altman plot and found no systematic errors. The overall strength and quality of the evidence was rated as “low quality” as defined by the GRADE system. Conclusions: We conclude that the validity of US derived equations based on MT is specific to the populations from where it is developed. The agreement with MV based on MRI is moderate with SEE ranging between 6-12% in healthy populations. Suggestions for future research are to investigate if testing positions or increasing the number of measuring points could improve the validity for prediction equations.


2017 ◽  
Vol 29 (9) ◽  
pp. 1644-1648 ◽  
Author(s):  
Akio Morimoto ◽  
Tadashi Suga ◽  
Nobuaki Tottori ◽  
Michio Wachi ◽  
Jun Misaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document