scholarly journals Intake of Calanus finmarchicus oil for 12 weeks improves omega-3 index in healthy older subjects engaging in an exercise programme

2020 ◽  
pp. 1-8
Author(s):  
Paulina Wasserfurth ◽  
Josefine Nebl ◽  
Tim Konstantin Boßlau ◽  
Karsten Krüger ◽  
Andreas Hahn ◽  
...  

Abstract The n-3 PUFA, EPA and DHA, play an important role in human health. As the intake of EPA and DHA from the diet is often inadequate, supplementation of those fatty acids is recommended. A novel source of n-3 PUFA is Calanus finmarchicus oil (CO) which contains fatty acids mainly bound in wax esters. To date, no data are available on the effects of long-term intake of this marine oil on n-3 PUFA blood levels. Therefore, the aim of this study was to evaluate the effect of CO on the n-3 PUFA blood levels using the omega-3 index (O3I). The data originate from a larger randomised controlled trial. For this analysis, samples from seventy-two participants (59·2 (sd 6·2) years, BMI 27·7 (sd 5·28) kg/m2) were analysed. Of those, thirty-six performed 2×/week exercise and received 2 g of CO, which provided 124 mg stearidonic acid (SDA), 109 mg EPA and 87 mg DHA daily (EXCO group), while the other group performed exercise only (EX group) and served as a control for this analysis. The O3I increased from 6·07 (sd 1·29) % at baseline to 7·37 (sd 1·10) % after 12 weeks within the EXCO group (P < 0·001), while there were no significant changes in the EX group (6·01 (sd 1·26)–6·15 (sd 1·32) %, P = 0·238). These data provide first evidence that wax ester-bound n-3 PUFA from CO can significantly increase the O3I despite relatively low EPA + DHA amounts. Further, the effects of exercise could be excluded.

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1627
Author(s):  
Ramesh Kumar Saini ◽  
Parchuri Prasad ◽  
Reddampalli Venkataramareddy Sreedhar ◽  
Kamatham Akhilender Naidu ◽  
Xiaomin Shang ◽  
...  

The omega−3 (n−3) polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) acid are well known to protect against numerous metabolic disorders. In view of the alarming increase in the incidence of chronic diseases, consumer interest and demand are rapidly increasing for natural dietary sources of n−3 PUFAs. Among the plant sources, seed oils from chia (Salvia hispanica), flax (Linum usitatissimum), and garden cress (Lepidium sativum) are now widely considered to increase α-linolenic acid (ALA) in the diet. Moreover, seed oil of Echium plantagineum, Buglossoides arvensis, and Ribes sp. are widely explored as a source of stearidonic acid (SDA), a more effective source than is ALA for increasing the EPA and DHA status in the body. Further, the oil from microalgae and thraustochytrids can also directly supply EPA and DHA. Thus, these microbial sources are currently used for the commercial production of vegan EPA and DHA. Considering the nutritional and commercial importance of n−3 PUFAs, this review critically discusses the nutritional aspects of commercially exploited sources of n−3 PUFAs from plants, microalgae, macroalgae, and thraustochytrids. Moreover, we discuss issues related to oxidative stability and bioavailability of n−3 PUFAs and future prospects in these areas.


2019 ◽  
Vol 29 (7) ◽  
pp. 2037-2044 ◽  
Author(s):  
Nathalie Bakker ◽  
Rick S. van den Helder ◽  
Remy W. F. Geenen ◽  
Michiel A. Hunfeld ◽  
Huib A. Cense ◽  
...  

2019 ◽  
Vol 78 (4) ◽  
pp. 526-531 ◽  
Author(s):  
William S. Harris ◽  
Francis B. Zotor

The purpose of this review is to consider the effects of the long-chain n-3 fatty acids found in marine foods, EPA and DHA, on risk for CVD, particularly fatal outcomes. It will examine both epidemiological and randomised controlled trial findings. The former studies usually examine associations between the dietary intake or the blood levels of EPA + DHA and CVD outcomes or, on occasion, total mortality. For example, our studies in the Framingham Heart Study and in the Women's Health Initiative Memory Study have demonstrated significant inverse relations between erythrocyte EPA + DHA levels (i.e. the Omega-3 Index) and total mortality. Recent data from the Cardiovascular Health Study reported the same relations between plasma phospholipid n-3 levels and overall healthy ageing. As regards randomised trials, studies in the 1990s and early 2000s were generally supportive of a cardiovascular benefit for fish oils (which contain EPA + DHA), but later trials were generally not able to duplicate these findings, at least for total CVD events. However, when restricted to effects on risk for fatal events, meta-analyses have shown consistent benefits for n-3 treatment. Taken together, the evidence is strong for a cardioprotective effect of EPA + DHA, especially when consumed in sufficient amounts to raise blood levels into healthy ranges. Establishing target EPA + DHA intakes to reduce risk for cardiovascular death is a high priority.


2017 ◽  
Vol 42 (3) ◽  
pp. 333-333 ◽  
Author(s):  
Kaitlin Roke

From a global health perspective, increased intake of omega-3 fatty acids (FAs), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for human health. However, the consumption of EPA- and DHA-rich foods such as fatty fish is low in the Western diet. Therefore, finding new ways to motivate people to increase their consumption of omega-3 FAs is essential. To find effective ways to motivate individuals, understanding people’s awareness of omega-3 FAs and how they obtain their knowledge about nutrition and health is critical. Consequently, we developed an online survey to assess awareness and self-reported intake of omega-3 FAs and supplements in young adults. EPA and DHA are also produced endogenously to a limited extent through a pathway regulated by fatty acid desaturase 1 and 2 (FADS1 and FADS2) genes. Of relevance, single nucleotide polymorphisms (SNPs) in the FADS genes influence levels of omega-3 FAs, where minor allele carriers have lower levels compared with major allele carriers. Accordingly, we conducted a clinical trial to investigate FA levels in response to dietary EPA and DHA supplementation in young adults stratified by SNPs in FADS1 and FADS2. The level of reported awareness of omega-3 terminology varied depending on an individual’s field of study and thus providing all participants with the same set of nutrition information could be an effective tool to increase knowledge and motivate behaviour change. Additionally, the variation in FA levels in accordance to SNPs in FADS1 and FADS2 could be used to create tailored nutritional recommendations which may improve lifestyle habits. The results discovered in the first 2 studies regarding awareness of omega-3 FAs and genetic variation were subsequently used to design a nutrigenetics intervention in young adults. Individuals who received their FADS1 genetic information were more aware of different omega-3 FAs and reported fewer barriers to their consumption by the end of the study, compared with those who did not receive their personal genetic information. All participants increased their intake of EPA and DHA, which was reflected in the analyses of red blood cells. Overall, this thesis demonstrates the power of combining nutritional and genetic information as motivators to increase omega-3 consumption.


Sign in / Sign up

Export Citation Format

Share Document