Weight gain and body composition during pregnancy: a randomised pilot trial with probiotics and/or fish oil

2020 ◽  
pp. 1-11
Author(s):  
Outi Pellonperä ◽  
Tero Vahlberg ◽  
Kati Mokkala ◽  
Noora Houttu ◽  
Ella Koivuniemi ◽  
...  

Abstract We evaluated the effects of fish oil and/or probiotic supplementation in a randomised placebo-controlled intervention pilot trial on gestational weight gain (GWG) and body composition. Additionally, the influence of gestational diabetes (GDM) on GWG and body composition was assessed. We randomised 439 overweight women into intervention groups: fish oil + placebo, probiotics + placebo, fish oil + probiotics and placebo + placebo (fish oil: 1·9 g DHA and 0·22 g EPA and probiotics: Lactobacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each). GDM was diagnosed with oral glucose tolerance test. Body composition was measured with air displacement plethysmography at randomisation (mean 13·9) and in late pregnancy (mean 35·2 gestational weeks). Intervention did not influence mean GWG or change in body fat mass/percentage (P > 0·17). Body composition in early pregnancy did not differ between the women who did or did not develop GDM (adjusted P > 0·23). Compared with the normoglycaemic women (n 278), women diagnosed with GDM (n 119) gained less weight (7·7 (sd 0·4) v. 9·3 (sd 0·4) kg, adjusted mean difference −1·66 (95 % CI −2·52, −0·80) and fat mass (0·4 (sd 0·4) v. 1·8 (sd 0·3) kg, adjusted mean difference −1·43 (95 % CI −2·19, −0·67) during the follow-up. In conclusion, adiposity of pregnant overweight women was not affected by supplementation with fish oil and/or probiotics, nor did it predict the development of GDM. However, adiposity was reduced in women with GDM compared with normoglycaemic women irrespective of the dietary intervention.

Author(s):  
Motoko Taguchi ◽  
Akiko Hara ◽  
Hiroko Murata ◽  
Suguru Torii ◽  
Takayuki Sako

For athletes to gain body mass, especially muscle, an increase in energy consumption is necessary. To increase their energy intake, many athletes consume more meals, including supplementary meals or snacks. However, the influence of meal frequency on changes in body composition and appetite is unclear. The aim of this study was to determine the effect of meal frequency on changes in body composition and appetite during weight gain in athletes through a well-controlled dietary intervention. Ten male collegiate rowers with weight gain goals were included in this study. The subjects were randomly classified into two groups, and dietary intervention was implemented using a crossover method. During the intervention period, all subjects were provided identical meals aimed to provide a positive energy balance. The meals were consumed at a frequency of either three times (regular frequency) or six times (high frequency) a day. Body composition was measured using dual energy X-ray absorptiometry, and the visual analog scale was used for the evaluation of appetite. In both trials, body weight, fat-free mass, and fat mass significantly increased; however, an interaction (Trial × Time) was not observed. Visual analog scale did not vary between trials. Our data suggest that partitioning identical excess dietary intakes over three or six meals does not influence changes in body composition or appetite during weight gain in athletes.


2020 ◽  
Vol 123 (11) ◽  
pp. 1269-1276
Author(s):  
Steven Law ◽  
Andrew Davenport

AbstractThe majority of peritoneal dialysates use glucose to generate an osmotic gradient for the convective removal of water and Na. Although glucose can potentially be absorbed, previous studies have failed to establish whether this leads to increased fat weight gain. We measured body composition using bioimpedance in peritoneal dialysis (PD) patients, electively starting PD, attending for their first assessment of peritoneal membrane function after 2–3 months, and then after 12 months. We studied 143 patients: eighty-nine (62·2 %) males, fifty-three (37·1 %) diabetics, mean age 61·3 (SD 14·9) years, with ninety (62·1 %) patients treated by automated PD cyclers with a daytime icodextrin exchange and thirty-seven (25·9 %) by continuous ambulatory PD. Median fat mass increased by 1·8 (–0·5 to 4·1) kg, whereas fat-free mass fell –1·3 (–2·9 to 1·0) kg, and the increase in fat mass was negatively associated with the fall in soft lean mass (r –0·41, P < 0·001). Increased fat mass was associated with measured peritoneal glucose absorption (r 0·69, P < 0·001), and glucose absorption was associated with the amount of 22·7 g/l glucose dialysate (OR 2·0, 95 % CI 1·5, 2·5, P < 0·001), peritoneal urea clearance (OR 9·5, 95 % CI 2·4, 37·1, P = 0·001) and male sex (OR 4·8, 95 % CI 1·5, 14·9, P = 0·008). We report an observational study in prevalent PD patients following body composition from their first assessment of PD membrane function for approximately 12 months, and despite the majority of patients prescribed icodextrin, we have demonstrated not only an association between intra-peritoneal glucose absorption and fat weight gain but also loss of fat-free mass.


2019 ◽  
Vol 109 (3) ◽  
pp. 576-585 ◽  
Author(s):  
Clare R Wall ◽  
Rebecca J Hill ◽  
Amy L Lovell ◽  
Misa Matsuyama ◽  
Tania Milne ◽  
...  

ABSTRACT Background Growing Up Milk (GUM) was developed to assist young children in meeting their nutritional requirements during the second year of life. However, there is limited evidence that GUM improves nutritional status and growth in young children. Objectives To evaluate the effect of consuming Growing Up Milk “Lite” (GUMLi) (reduced protein with synbiotics and micronutrients added) compared with standard cow milk as part of a whole diet for 1 y on body composition at 2 y of age. Methods GUMLi Trial was a multicenter, double-blind, randomized placebo-controlled trial conducted in Auckland and Brisbane. Healthy 1-y-olds were recruited and randomly assigned to receive either GUMLi or standard cow milk for 12 mo as part of a whole diet. The primary outcome was percentage body fat at 2 y of age measured by bioelectrical impedance. All regression models adjusted for baseline outcome and study center. Results 160 children (80 per arm) were randomly assigned, and 134 (67 per arm) were included in the modified intention-to-treat analyses. The mean percentage body fat at 12 mo was 23.3% (SD 7.9) in the GUMLi group and 25.7% (SD 7.2) in the cow milk group. After adjusting for baseline outcome and study location, the estimated mean difference in percentage body fat between the intervention and control at 12 mo was −2.19% (95% CI: −4.24, −0.15; P = 0.036). Per-protocol analysis showed a similar effect (mean difference: −2.09%; 95% CI: −4.16, −0.03; P = 0.047). Both fat mass and the fat mass index were significantly lower in the GUMLi group at 12 mo than in the cow milk group. Conclusions At 2 y of age, children who consumed a GUM with a lower protein content than cow milk over 12 mo had a lower percentage of body fat. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN12614000918628.


2014 ◽  
Vol 49 (12) ◽  
pp. 925-929 ◽  
Author(s):  
Fabiano Bendhack ◽  
Ana Paula Baldan ◽  
Thiago El Hadi Perez Fabregat

The objective of this work was to evaluate fish oil replacement by soybean oil in diets, as for the effects on the performance and body composition of juveniles of fat snook (Centropomus parallelus). The experiment was carried out in a randomized block design, with three treatments (lipid sources) and six replicates, in a 60-day period. Fat snook juveniles (24.17±0.28g) were distributed in 18 experimental tanks of 200 L each, equipped with aeration and heating systems, under continuous water renovation (800% per day). Three isoproteic (44% CP) and isoenergetic (4,635 kcal CE kg-1) diets were formulated to comprise three replacement rates (0, 50, and 100%) of fish oil by soybean oil. Biometric analyses were done to evaluate fish performance, and two entire specimens from each replicate were used for body composition analyses. The zootechnical indices of weight gain (38.68±5.41 g), feed conversion (1.38±0.10), and specific growth at 1.70±0.18% weight gain per day were considered satisfactory. Lipid source substitution does not affect the performance and body composition of fat snook juveniles, which suggests that soybean oil can replace fish oil in diet formulation.


2001 ◽  
Vol 90 (6) ◽  
pp. 2033-2040 ◽  
Author(s):  
Ellen M. Evans ◽  
Rachael E. Van Pelt ◽  
Ellen F. Binder ◽  
Daniel B. Williams ◽  
Ali A. Ehsani ◽  
...  

The independent and combined effects of exercise training and hormone replacement therapy (HRT) on body composition, fat distribution, glucose tolerance, and insulin action were studied in postmenopausal women, aged 68 ± 5 yr, assigned to control ( n = 19), exercise ( n = 18), HRT ( n = 15), and exercise + HRT ( n = 16) groups. The exercise consisted of 2 mo of flexibility exercises followed by 9 mo of endurance exercise. HRT was conjugated estrogens 0.625 mg/day and trimonthly medroxyprogesterone acetate 5 mg/day for 13 days. Total and regional body composition were measured by dual-energy X-ray absorptiometry. Serum glucose and insulin responses were measured during a 2-h oral glucose tolerance test. There were significant main effects of exercise on reductions in total and regional (trunk, arms, legs) fat mass, increase in leg fat-free mass, and improvements in glucose tolerance and insulin action. There were significant main effects of HRT on the reduction of total fat mass (HRT, −3.0 ± 4.0 kg; no HRT, −1.3 ± 2.6 kg), with a strong trend for reductions in trunk and leg fat mass (both P = 0.07). There was also a significant improvement in insulin action in response to HRT. These results suggest that there are independent and additive effects of exercise training and HRT on the reduction in fat mass and improvement in insulin action in postmenopausal women; the effect of HRT on insulin action may be mediated, in part, through changes in central adiposity.


2008 ◽  
Vol 10 (1) ◽  
pp. 34-43 ◽  
Author(s):  
M. Tish Knobf ◽  
Karl Insogna ◽  
Loretta DiPietro ◽  
Kristopher Fennie ◽  
A. Siobhan Thompson

Objective. Weight gain and bone loss are commonly reported in breast cancer survivors. The purpose of this pilot study is to assess feasibility and explore the effect of an aerobic weight-loaded exercise intervention on bone remodeling, weight, and body composition.Design. A one-group pre-posttest design was used to test a 16—24-week supervised walking exercise intervention among women within 2 years of menopause. Through Weeks 1—4, time and weight were progressively increased. By Week 5 and through the end of the intervention, a waist belt was loaded with 5 lb and participants spent 45 min on the treadmill 3 times/week. Bone remodeling was measured by serum biomarkers (N-terminal propeptides of type I collagen [NTX] and serum osteocalcin). Dual-energy absorptiometry scans assessed body composition. Data were collected at baseline and 16 and 24 weeks.Results. The majority of the 26 participants were married, well educated, and employed, with a mean age of 51.3 years (SD = 6.2). The high adherence (M = 88.2%, SD = 6.8) demonstrated feasiblity. There were no significant changes in serum osteocalcin (p = .67), serum NTX (p = .31), lean muscle mass (p = .08), or percent fat mass for the group as a whole (p = .14), but fat mass increased for women on adjuvant endocrine therapy (p = .04). The women maintained their weight.Conclusions. This novel exercise intervention for breast cancer survivors was feasible, and women otherwise at high risk for weight gain and bone loss maintained their weight and bone mass.


2016 ◽  
Vol 116 (1) ◽  
pp. 132-141 ◽  
Author(s):  
Pan Huang ◽  
Jianghua Zhou ◽  
Yanan Yin ◽  
Wenjuan Jing ◽  
Biru Luo ◽  
...  

AbstractWe conducted a systematic review and meta-analysis to compare the effect of breast-feeding and formula-feeding on body composition of preterm infants. We searched the literature using PubMed, Cochrane Central Library Issue, Ovid (Medline), Embase and other resources such as Google Scholar, electronic databases and bibliographies of relevant articles; two reviewers collected and extracted data independently. All the authors assessed risk of bias independently using the Newcastle–Ottawa Scale (NOS). A fixed-effects meta-analysis was undertaken with RevMan 5 software (The Cochrane Collaboration) using the inverse variance method (P≥0·05;χ2test). In contrast, a random-effects meta-analysis was carried out. Altogether, 630 articles were identified using search strategy, and the references within retrieved articles were also assessed. A total of six studies were included in this systematic review. In formula-fed infants, fat mass was higher at term (mean difference 0·24 (95 % CI 0·17, 0·31) kg), fat-free mass was higher at 36 weeks of gestational (mean difference 0·12 (95 % CI 0·04, 0·21) kg) and the percentage of fat mass was higher at 36 weeks of gestation (mean difference 3·70 (95 % CI 1·81, 5·59) kg) compared with breast-fed infants. Compared with breast-feeding, formula-feeding is associated with altered body composition from birth to term in preterm infants. The effects of formula-feeding on preterm infant body composition from term to 12-month corrected age are inconclusive in our study. Well-designed studies are required in the future to explore the effects of formula-feeding compared with breast-feeding.


2016 ◽  
Vol 175 (5) ◽  
pp. 403-410 ◽  
Author(s):  
Carol ní Chaoimh ◽  
Deirdre M Murray ◽  
Louise C Kenny ◽  
Alan D Irvine ◽  
Jonathan O’B Hourihane ◽  
...  

Objectives Low early-life leptin concentrations may promote faster weight gain in infancy. We aimed to examine the associations between cord blood leptin concentrations and changes in weight and body composition during infancy. Design and methods Serum leptin was measured at 15 weeks gestation, in umbilical cord blood collected at delivery and at 2 years in 334 children from the Cork Baseline Birth Cohort Study. Body composition was measured at 2 days and 2 months using air displacement plethysmography. Conditional change in weight standard deviation scores over a number of age intervals in the first 2 years and conditional change in fat mass index (FMI) and fat-free mass index (FFMI) (kg/(length)m2) between birth and 2 months were calculated and associations with cord blood leptin were examined using linear regression. Results At birth, cord blood leptin was positively correlated with FMI (r = 0.48, P < 0.001) and showed a weaker correlation with FFMI (r = 0.12, P = 0.05). After adjustment for confounders, higher cord blood leptin (per ng/mL) was associated with slower conditional weight gain between birth and 2 months (β (95% CI): −0.024 (−0.035, −0.013), P < 0.001) but not over subsequent age intervals. Cord blood leptin was also inversely associated with conditional change in FMI (−0.021 (−0.034, −0.007, P = 0.003) but not FFMI between birth and 2 months. Conclusions These are the first data to show that associations between higher cord blood leptin and slower weight gain during infancy are driven by lower increases in adiposity, at least in early infancy.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1126-1126
Author(s):  
Weimin Guo ◽  
Dayong Wu ◽  
Lijun Li ◽  
Edwin Ortega ◽  
Yankun Liu ◽  
...  

Abstract Objectives Obesity is associated with impaired immune function. However, impact of obesity on blood T cell profile is not well studied. The objectives of this study were to investigate the effects of high fat diet (HFD)-induced obesity and long-term fruits and vegetable (FV) consumption on body composition and blood T cell profile. Methods This is partial report from an ongoing study. A total of 240 male C57BL/6J mice were randomly assigned to 4 groups: low fat control (LF-C) or high-fat control (HF-C) diet alone, or together with 15% of a unique mixture of FV (w/w, equivalent to 7–9 servings F&V/d for human) (LF-FV or HF-FV). The feeding will continue until 50% mortality is reached in one group. Body weight, body composition (using MRI), and blood T cell profile (using FACS) are monitored longitudinally at different time points. The results reported here are those assessed when mice were 7 months old. Results After 7 months of feeding, mice fed HF-C gained more weight compared to those fed LF-C. Mice fed HF-FV or LF-FV diets had significantly reduced weight gain and fat mass, and higher muscle mass compared to those fed HF-C or LF-C diet, respectively. Mice fed HF-C also had significantly lower percentage of blood CD3+, CD4+, and CD8 + T cells compared with the LF-C. FV supplementation prevented HFD-induced decrease in percentage of CD3+ and CD4+ cells. Furthermore, both % CD3+ and CD4+ cells were negatively correlated with body weight (P &lt; 0.001) or percentage of fat mass (P &lt; 0.001), and positively associated with percentage of lean mass (P &lt; 0.001). Conclusions Our results suggest that consuming large amounts of a unique mixture of F&V curbs HFD-induced body weight gain, reduces fat mass, and favorably affects blood T cell population. Ongoing studies will assess these analytes when mice are 16 months old, and again when one group reaches 50% mortality, and determine their correlations with functional measures of T cell response, host resistance to infection, health span, and mortality. Funding Sources This study was supported by the U.S. Department of Agriculture – Agricultural Research Service (ARS), under Agreement No. 58–1950-4–004.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Rebecca Rimbach ◽  
Yosuke Yamada ◽  
Hiroyuki Sagayama ◽  
Philip N. Ainslie ◽  
Lene F. Anderson ◽  
...  

AbstractLow total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in 348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval: 1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free mass, and fat mass is associated with changes in weight or body composition. Here, we report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed models show no among or within-individual correlation between body composition (fat mass or percentage) and unadjusted TEE in adults. For adults aged 20–60 y (N = 267; time interval: 7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with changes in body composition; results are similar for subjects with intervals >4 weeks (N = 53; 29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not protective against, weight or body fat gain over the time intervals tested.


Sign in / Sign up

Export Citation Format

Share Document