scholarly journals Blood glucose and meal patterns in time-blinded males, after aspartame, carbohydrate, and fat consumption, in relation to sweetness perception

1999 ◽  
Vol 82 (6) ◽  
pp. 437-446 ◽  
Author(s):  
Kathleen J. Melanson ◽  
Margriet S. Westerterp-Plantenga ◽  
L. Arthur Campfield ◽  
Wim H. M. Saris

In a study of the impact of aspartame, fat, and carbohydrate on appetite, we monitored blood glucose continuously for 431 (se 16) min. Ten healthy males (19–31 years) participated in three time-blinded visits. As blood glucose was monitored, appetite ratings were scored at randomized times. On the first meal initiation, volunteers consumed one of three isovolumetric drinks (aspartame, 1 MJ simple carbohydrate, and 1 MJ high-fat; randomized order). High-fat and high-carbohydrate foods were available ad libitum subsequently. Blood glucose patterns following the carbohydrate drink (+1·78 (se 0·28) mmol/l in 38 (se 3) min) and high-fat drink (+0·83 (se 0·28) mmol/l in 49 (se 6) min) were predictive of the next intermeal interval (R 0·64 and R 0·97 respectively). Aspartame ingestion was followed by blood glucose declines (40 % of subjects), increases (20 %), or stability (40 %). These patterns were related to the volunteers' perception of sweetness of the drink (R 0·81, P = 0·014), and were predictive of subsequent intakes (R -0·71, P = 0·048). For all drinks combined, declines in blood glucose and meal initiation were significantly associated (χ2 16·8, P < 0·001), the duration of blood glucose responses and intermeal intervals correlated significantly (R 0·715, P = 0·0001), and sweetness perception correlated negatively with hunger suppression (R -0·471, P = 0·015). Effects of fat, carbohydrate, and aspartame on meal initiation, meal size, and intermeal interval relate to blood glucose patterns. Varied blood glucose responses after aspartame support the controversy over its effects, and may relate to sweetness perception.

2016 ◽  
Vol 115 (10) ◽  
pp. 1875-1884 ◽  
Author(s):  
Mark Hopkins ◽  
Catherine Gibbons ◽  
Phillipa Caudwell ◽  
John E. Blundell ◽  
Graham Finlayson

AbstractAlthough the effects of dietary fat and carbohydrate on satiety are well documented, little is known about the impact of these macronutrients on food hedonics. We examined the effects ofad libitumand isoenergetic meals varying in fat and carbohydrate on satiety, energy intake and food hedonics. In all, sixty-five overweight and obese individuals (BMI=30·9 (sd3·8) kg/m2) completed two separate test meal days in a randomised order in which they consumed high-fat/low-carbohydrate (HFLC) or low-fat/high-carbohydrate (LFHC) foods. Satiety was measured using subjective appetite ratings to calculate the satiety quotient. Satiation was assessed by intake atad libitummeals. Hedonic measures of explicit liking (subjective ratings) and implicit wanting (speed of forced choice) for an array of HFLC and LFHC foods were also tested before and after isoenergetic HFLC and LFHC meals. The satiety quotient was greater afterad libitumand isoenergetic meals during the LFHC condition compared with the HFLC condition (P=0·006 andP=0·001, respectively), whereasad libitumenergy intake was lower in the LFHC condition (P<0·001). Importantly, the LFHC meal also reduced explicit liking (P<0·001) and implicit wanting (P=0·011) for HFLC foods compared with the isoenergetic HFLC meal, which failed to suppress the hedonic appeal of subsequent HFLC foods. Therefore, when coupled with increased satiety and lower energy intake, the greater suppression of hedonic appeal for high-fat food seen with LFHC foods provides a further mechanism for why these foods promote better short-term appetite control than HFLC foods.


1999 ◽  
Vol 277 (2) ◽  
pp. R337-R345 ◽  
Author(s):  
Kathleen J. Melanson ◽  
Margriet S. Westerterp-Plantenga ◽  
Wim H. M. Saris ◽  
Françoise J. Smith ◽  
L. Arthur Campfield

We assessed the extent to which a possible synchronization between transient blood glucose declines and spontaneous meal initiation would lend support to the interpretation of a preload study with isoenergetic (1 MJ) isovolumetric high-fat or simple carbohydrate (CHO) preload drinks. Ten men (18–30 yr) fasted overnight and then were time blinded and made aware that they could request meals anytime. At first meal requests, volunteers consumed a preload; ad libitum meals were offered at subsequent requests. Postabsorptively, transient declines in blood glucose were associated with meal requests (χ2 = 8.29). Subsequent meal requests occurred during “dynamic declines” in blood glucose after the peak induced by drink consumption (100%). These meal requests took twice as long to occur after high-fat than after CHO preloads (fat = 126 ± 21, CHO = 65 ± 15 min), consistent with differences in interpolated 65-min satiety scores (fat = 38 ± 8.2, CHO = 16 ± 4). Postprandially, transient blood glucose declines were associated with meal requests (χ2 = 4.30). Spontaneous meal initiations were synchronized with transient and dynamic blood glucose declines. Synchronization of intermeal interval and dynamic declines related to higher satiating efficiency from high-fat preloads than from simple CHO preloads.


1999 ◽  
Vol 87 (3) ◽  
pp. 947-954 ◽  
Author(s):  
Kathleen J. Melanson ◽  
Margriet S. Westerterp-Plantenga ◽  
L. Arthur Campfield ◽  
Wim H. M. Saris

Regulatory functions of glycogen stores and blood glucose on human appetite, particularly relating to exercise, are not fully understood. Ten men (age 20–31 yr) performed glycogen-depleting exercise in an evening, ate a low-carbohydrate dinner, and stayed overnight in the laboratory. The next day, blood glucose was monitored continuously for 517 ± 23 (SE) min. Subjects had access to high-fat and high-carbohydrate foods after baseline glucose and respiratory quotient were determined. In the afternoon, 1 h of moderate exercise was performed. Baseline respiratory quotient was 0.748 ± 0.008, plasma free fatty acids were 677 ± 123 μmol/l, insulin was 4.8 ± 0.5 μU/ml, and leptin was 1.9 ± 0.3 ng/ml. Postabsorptively, 8 of 10 meals were initiated during stability in blood glucose. Postprandially, the association between meal initiation and blood glucose declines became significant (χ2 = 7.82). During moderate exercise, blood glucose initially decreased but recovered before completion. When the glycogen buffer is depleted, meal initiation can occur during blood glucose stability; the relationship between blood glucose declines and meal initiation reestablishes with refeeding.


2020 ◽  
Vol 178 (2) ◽  
pp. 311-324
Author(s):  
Marisa Pfohl ◽  
Lishann Ingram ◽  
Emily Marques ◽  
Adam Auclair ◽  
Benjamin Barlock ◽  
...  

Abstract Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.


1963 ◽  
Vol 41 (1) ◽  
pp. 2225-2235
Author(s):  
A. DesMarais ◽  
P. A. Lachance

The well known reduction in growth rate of cold-acclimated rats has been shown to depend on a decreased gain in total body fat, without change in the gain in lean body weight. This has been observed in rats fed Lab Chow or a high-fat diet ad libitum. In those groups fed a high-carbohydrate diet ad libitum or calorie-restricted high-fat or high-carbohydrate diets, exposure to cold had no effect on the gain in neither total body weight nor lean body weight, which were already reduced by the diet; in those animals, the significant decrease in the gain in total body fat upon exposure to cold was compensated by a slight but unsignificant increase in the gain in lean body weight, so that differences in gain in total body weight were not significant.


Nutrition ◽  
1998 ◽  
Vol 14 (11-12) ◽  
pp. 840-845 ◽  
Author(s):  
Alejandro Sanz-París ◽  
Luisa Calvo ◽  
Ana Guallard ◽  
Isabel Salazar ◽  
Ramón Albero

2000 ◽  
Vol 84 (4) ◽  
pp. 521-530 ◽  
Author(s):  
S. M. Green ◽  
J. K. Wales ◽  
C. L. Lawton ◽  
J. E. Blundell

The present study aimed to compare the action of high-fat and high-carbohydrate (CHO) foods on meal size (satiation) and post-meal satiety in obese women. A within-subjects design was used; each participant received all four nutritional challenges. Fifteen healthy obese women (age 21–56 years, BMI 35–48 kg/m2) participated; thirteen completed all four test days. On two test days, participants were exposed to a nutritional challenge comprising an ad libitum high-fat or high-CHO lunch. On the other two test days they were exposed to a challenge comprising an ad libitum sweet high-fat or high-CHO mid-afternoon snack. Energy and macronutrient intakes were measured at each eating episode. Visual analogue rating scales were completed periodically to record subjective feelings of appetite. When offered a high-CHO selection of foods at lunch and mid-afternoon participants consumed less energy than when offered a high-fat selection. However, post-meal satiety was similar. Total test-day energy intake was significantly higher when high-fat foods were consumed at lunch, but not as a snack. Consumption of high-fat foods at a lunch and snack increased the amount of fat consumed over the whole test day. In conclusion, energy intake of an eating episode was influenced by nutrient composition in this group of obese women. Consumption of high-fat foods at lunch or as a snack led to overconsumption relative to high-CHO foods. However, high-fat foods at meals may have greater potential to influence daily intake than at snacks, probably because meals are larger eating episodes and therefore give greater opportunity to overconsume.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Sumit Bhattacharyya ◽  
Leo Feferman ◽  
Terry Unterman ◽  
Joanne K. Tobacman

Aims. Major aims were to determine whether exposure to the commonly used food additive carrageenan could induce fasting hyperglycemia and could increase the effects of a high fat diet on glucose intolerance and dyslipidemia.Methods. C57BL/6J mice were exposed to either carrageenan, high fat diet, or the combination of high fat diet and carrageenan, or untreated, for one year. Effects on fasting blood glucose, glucose tolerance, lipid parameters, weight, glycogen stores, and inflammation were compared.Results. Exposure to carrageenan led to glucose intolerance by six days and produced elevated fasting blood glucose by 23 weeks. Effects of carrageenan on glucose tolerance were more severe than from high fat alone. Carrageenan in combination with high fat produced earlier onset of fasting hyperglycemia and higher glucose levels in glucose tolerance tests and exacerbated dyslipidemia. In contrast to high fat, carrageenan did not lead to weight gain. In hyperinsulinemic, euglycemic clamp studies, the carrageenan-exposed mice had higher early glucose levels and lower glucose infusion rate and longer interval to achieve the steady-state.Conclusions. Carrageenan in the Western diet may contribute to the development of diabetes and the effects of high fat consumption. Carrageenan may be useful as a nonobese model of diabetes in the mouse.


Sign in / Sign up

Export Citation Format

Share Document