Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb

2009 ◽  
Vol 99 (6) ◽  
pp. 611-617 ◽  
Author(s):  
Y. Lu ◽  
X. Gao

AbstractBoth Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) are the most important pests of wheat in China and usually coexist on the late period of wheat growth. Pirimicarb was introduced into China for wheat aphid control in early 1990s, and differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb have been observed. A bioassay exhibited that Rhopalosiphum padi possessed significantly higher susceptibility to pirimicarb than Sitobion avenae. The addition of synergists DEF, an esterase inhibitor, PBO, a cytochrome P450 monooxygenase inhibitor, and DEM, a glutathione S-transferase inhibitor, resulted in apparent reductions in the differential susceptibilities, suggesting the involvement of the above three detoxification enzymes in the differential susceptibility to pirimicarb between Sitobion avenae and Rhopalosiphum padi. A biochemical analysis showed that the activities of carboxylesterases and glutathione S-transferases were significantly higher in Sitobion avenae than in Rhopalosiphum padi, consistent with the results of synergism. Acetylcholinesterase is the target enzyme of pirimicarb and the sensitivity of acetylcholinesterase to pirimicarb was significantly higher in Rhopalosiphum padi than in Sitobion avenae. The combined results suggest that multiple mechanisms are likely to be responsible for differential susceptibilities to pirimicarb between Sitobion avenae and Rhopalosiphum padi. The results obtained from this study should be helpful in the rational applications of insecticides.

1997 ◽  
Vol 129 (6) ◽  
pp. 1079-1091 ◽  
Author(s):  
K.A. Neil ◽  
S.O. Gaul ◽  
K.B. McRae

AbstractSeasonal abundance of Sitobion avenae (F.) and Rhopalosiphum padi (L.) was monitored in Nova Scotia winter wheat plots. Rhopalosiphum padi was the more common aphid species during "heading out." Winter wheat cultivars differed in their resistance to R. padi development; the highest reproductive rate was on ’Absolvent.’ The effect of chemicals used in intensive cereal management on R. padi and Coccinella septempunctata (L.) was assessed. Dimethoate and carbaryl caused similar high mortality to both insects, but pirimicarb was more toxic to the aphid than to its predator. Over a 2-year period, field plots that received regular pirimicarb treatments for selective aphid control early in the growing season showed a 9% increase in wheat yield, compared with the checks and plots that received carbaryl. Wheat yield increased 18% when pirimicarb was used later in the season; when applied in both periods, pirimicarb gave a total yield increase of nearly 30%. Late applications of carbaryl alone, or in combination with pirimicarb, increased yields by only 9% over the controls. Half of the yield increase (18% vs. 9%) with late season control by pirimicarb was lost with the addition of carbaryl, which minimized the C. septempunctata population for nonselective insect control. Rhopalosiphum padi numbers from June 20 to July 15 had the greatest impact on yield in these plots, and natural control agents including C. septempunctata accounted for a 9% increase in yield.


Genome ◽  
2011 ◽  
Vol 54 (10) ◽  
pp. 829-835 ◽  
Author(s):  
Mysore S. Ranjini ◽  
Ravikumar Hosamani ◽  
Muralidhara ◽  
Nallur B. Ramachandra

The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta–albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay.


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 54 ◽  
Author(s):  
Ibtissem Ben Fekih ◽  
Annette Bruun Jensen ◽  
Sonia Boukhris-Bouhachem ◽  
Gabor Pozsgai ◽  
Salah Rezgui ◽  
...  

Pandora neoaphidis and Entomophthora planchoniana (phylum Entomophthoromycota) are important fungal pathogens on cereal aphids, Sitobion avenae and Rhopalosiphum padi. Here, we evaluated and compared for the first time the virulence of these two fungi, both produced in S. avenae cadavers, against the two aphid species subjected to the same exposure. Two laboratory bioassays were carried out using a method imitating entomophthoralean transmission in the field. Healthy colonies of the two aphid species were exposed to the same conidial shower of P. neoaphidis or E. planchoniana, in both cases from a cadaver of S. avenae. The experiments were performed under LD 18:6 h at 21 °C and a successful transmission was monitored for a period of nine days after initial exposure. Susceptibility of both S. avenae and R. padi to fungal infection showed a sigmoid trend. The fitted nonlinear model showed that the conspecific host, S. avenae, was more susceptible to E. planchoniana infection than the heterospecific host R. padi, was. In the case of P. neoaphidis, LT50 for S. avenae was 5.0 days compared to 5.9 days for R. padi. For E. planchoniana, the LT50 for S. avenae was 4.9 days, while the measured infection level in R. padi was always below 50 percent. Our results suggest that transmission from conspecific aphid host to heterospecific aphid host can occur in the field, but with expected highest transmission success to the conspecific host.


1983 ◽  
Vol 73 (1) ◽  
pp. 107-115 ◽  
Author(s):  
M. F. Stribley ◽  
G. D. MOORES ◽  
A. L. DEVONSHIRE ◽  
R. M. SAWICKI

AbstractBaseline toxicity measurements established discriminating concentrations of pirimicarb and demeton-S-methyl guaranteed to kill susceptible examples of Aphis fabae Scop., Sitobion avenae (F.), Metopolophium dirhodum (Wlk.) and Rhopalosiphum padi (L.) in the dip-test, the FAO-recommended method for detecting resistance in aphids. There was no evidence for resistance to either insecticide in field-collected populations of aphids from various parts of the UK or amongst variants of S. avenae characterised by staining their esterases after electrophoresis. New, simple techniques for rearing large numbers of colonies of cereal aphids are described.


2016 ◽  
Vol 106 (4) ◽  
pp. 551-559 ◽  
Author(s):  
Y.-H. Lu ◽  
X.-S. Zheng ◽  
X.-W. Gao

AbstractThe aphid species Sitobion avenae and Rhopalosiphum padi are the most important pests in wheat growing regions of many countries. In this study, we investigated the sublethal effects of imidacloprid on fecundity, longevity, and enzyme activity in both aphid species by comparing 3-h exposure for one or three generations. Our results indicated that 3-h exposure to sublethal doses of imidacloprid for one generation had no discernible effect on the survival, fecundity, longevity, or enzyme activity levels of aphids. However, when pulse exposures to imidacloprid were sustained over three generations, both fecundity and longevity were significantly decreased in both S. avenae and R. padi. Interestingly, the fecundity of R. padi had almost recovered by the F5 generation, but its longevity was still deleteriously affected. These results indicated that R. padi laid eggs in shorter time lags and has a more fast resilience. The change in reproduction behavior may be a phenomenon of R. padi to compensate its early death. If this is stable for the next generation, it means that the next generation is more competitive than unexposed populations, which could be the reason underlying population outbreaks that occur after longer-term exposure to an insecticide. This laboratory-based study highlights the sublethal effects of imidacloprid on the longevity and fecundity of descendants and provides an empirical basis from which to consider management decisions for chemical control in the field.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiang-Shun Hu ◽  
Xiao-Feng Liu ◽  
Thomas Thieme ◽  
Gai-Sheng Zhang ◽  
Tong-Xian Liu ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128936 ◽  
Author(s):  
Da Xiao ◽  
Ting Yang ◽  
Nicolas Desneux ◽  
Peng Han ◽  
Xiwu Gao

Sign in / Sign up

Export Citation Format

Share Document