Effects of Seed Carriers on Seedling Establishment after Fluid Drilling

1980 ◽  
Vol 16 (2) ◽  
pp. 153-160 ◽  
Author(s):  
R. J. Darby

SUMMARYSix products possessing suitable physical properties as fluid carriers for pre-germinated seed were assessed for their effects on seedling emergence. Both glasshouse and field experiments measured the carriers' performance on eight crop species at varying extrusion rates and under different environmental conditions. Synthetic clay or polyacrylate increased seedling emergence by 10% compared with the sodium alginate control. Seedling emergence was least affected by moisture stress when synthetic clay was used as the carrier.

1976 ◽  
Vol 87 (3) ◽  
pp. 633-642 ◽  
Author(s):  
A. P. Draycott ◽  
M. J. Durrant ◽  
D. B. Davies ◽  
L. V. Vaidyanathan

SummaryDespite much experimental evidence showing that sodium fertilizer increases sugar–beet yield and decreases need for potassium, there is resistance to its use on some soil types through fears of deterioration in soil structure. Twelve field experiments with sugar beet were made in Eastern England, testing all combinations of autumn and spring applications of 0, 150 and 300 kg Na/ha and 0, 83 and 333 kg K/ha. Fields were chosen with soils of loamy very fine sand, very fine sandy loam, sandy clay loam and clay loam textures. Micro–plot and controlled environment studies were also made with the same soils to examine effects of sodium on seedling emergence and growth.Visual assessments of soil physical state following sodium application revealed no effect in the year sugar beet was grown nor in the following spring when cereals were grown. Measurements of physical properties of soils treated with sodium suggested that applications of several times the recommended amounts of sodium fertilizer would not damage soil structure. However, sodium fertilizer increased the osmotic suction of soil solution which, under some circumstances, e.g. dry springs or giving the fertilizer close to the time of sowing, decreased germination and seedling growth. For this reason and not because it has a detrimental effect on soil physical condition, sodium fertilizer best given in the autumn or some weeks before sowing.


1988 ◽  
Vol 110 (1) ◽  
pp. 93-99 ◽  
Author(s):  
W. E. Finch-Savage ◽  
C. I. McQuistan

SummaryThe relationship between germination rate within a carrot seed lot and subsequent seedling performance was studied in four seed lots of different viability. Seedling performance was assessed using slope tests conducted under controlled conditions and in the field following fluid drilling under a range of environmental conditions. Germination rate within a seed lot was positively related to vigour measured by slope tests, percentage emergence and seedling weight, and was negatively related to the spread of emergence times (In variance days) and the coefficient of variation (c.v.) of seedling weights. Sowing seeds selected as fast germinating resulted in greater seedling emergence percentages over a range of environmental conditions than when sowing seeds selected as slowly germinating.


2008 ◽  
Vol 88 (4) ◽  
pp. 799-809 ◽  
Author(s):  
K. F. Chang ◽  
S. F. Hwang ◽  
B. D. Gossen ◽  
G. D. Turnbull ◽  
H. Wang ◽  
...  

Rhizoctonia solani causes seedling blight and root rot in lentil, which reduces plant populations and the vigour and yield of surviving plants. Factors in the seedling environment, such as inoculum density, temperature, seeding depth, seeding date, and fungicidal seed treatment were studied to determine the degree to which they affect the impact of R. solani on lentil seedlings. Survival of lentil plants was evaluated after planting into soil artificially inoculated with various concentrations of a highly aggressive isolate of R. solani (AG-4). Emergence, seedling survival and shoot dry matter production decreased with increasing inoculum density, but these declines varied with temperature. Low soil temperatures delayed the emergence of lentil seedlings in non-inoculated soil, but in inoculated soils, emergence was inhibited with increasing temperatures. Depth of seeding did not affect seedling establishment, but root rot severity increased with depth of seeding in a growth cabinet trial. Root nodulation was reduced as root rot severity increased. In field experiments carried out over 3 station years, seeding date had a substantial effect on seedling emergence and yield of inoculated treatments, but the trends were not consistent between sites. In field assessments of fungicide efficacy, treatment of seed with thiabendazole plus carbathiin (Crown) and carbathiin plus thiram (Vitaflo 280) improved seedling establishment relative to the inoculated control. Key words: Lens culinaris, damping-off, root rot, seeding date, fungicide seed treatment depth of seeding, thiabendazole, carbathiin, thiram


2011 ◽  
Vol 38 (2) ◽  
pp. 115-121 ◽  
Author(s):  
E.G. Cantonwine ◽  
C.C. Holbrook ◽  
A.K. Culbreath ◽  
R.S. Tubbs ◽  
M.A. Boudreau

ABSTRACT Stand establishment has been a challenge for organic peanut production in the Southeastern United States. Field experiments were conducted in 2007 and 2009 in research plots certified for organic production to evaluate the potential of genotype selection, shelling procedure, and seed treatment with Bacillus subtilis to improve stand establishment and seedling emergence rates, reduce incidence of Aspergillus crown rot, and increase seedling biomass. Seed of 15 peanut genotypes were mechanically shelled or hand-shelled, and treated with B. subtilis or untreated prior to planting in early June. Percent stand was estimated for each plot 17–21 days after planting (DAP), and percent seedlings affected by Aspergillus crown rot and plant biomass were estimated 21–24 DAP. Seed treatment significantly affected stand establishment for three genotypes each year, Georgia-01R both years, C-99R and Tifguard in 2007, and C34-24-69 and C724-19-25 in 2009. In all of these cases, the hand-shelled plots had significantly greater stands than the mechanically shelled plots for untreated and/or B. subtilis treated seed. B. subtilis treatment improved stands for two of the mechanically shelled treatments that significantly responded to hand shelling. Despite low incidence, there was a significant reduction of crown rot in the hand-shelled plots compared to the mechanically shelled plots across years and genotypes. The cultivar Georganic, which has been planted to organic peanut systems in Georgia in recent years, was among the genotypes with the lowest seedling establishment rates and biomass. Based on these results, it is recommended that sorting thresholds for damaged seed be higher for seed destined for organic production, and that breeding efforts that include assessments of factors involved in seedling establishment and growth be prioritized.


1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.


1983 ◽  
Vol 63 (2) ◽  
pp. 199-210 ◽  
Author(s):  
C. W. BULLEN ◽  
R. J. SOPER ◽  
L. D. BAILEY

Growth chamber and field experiments were conducted on Southern Manitoba soils, low in available soil phosphorus, to investigate the effects of various placement methods and levels of phosphorus fertilizer on soybean (Glycine max (L.) Merrill ’Maple Presto’). It was found that soybean responded well to applied phosphorus on low-P soil in growth chamber studies. In the first growth chamber experiment, P was applied in solution to 100%, 50%, 25%, 12.5% and 1% of the total soil volume. Dry matter yields, total phosphorus uptake and utilization of fertilizer P increased at each level of applied P as the size of the phosphated band was decreased. The results were partly attributed to greater chemical availability of P in the smaller zones of P fertilizer reaction. In a second growth chamber experiment, soybeans responded differently to phosphorus banded in six different locations. Placement of the fertilizer 2.5 cm directly below the seed was more effective in increasing dry matter yield, total phosphorus uptake and fertilizer P utilization than placement 2.5 cm and 5 cm away at the same depth or placement 5 cm below the seed, whether the band was directly below, 2.5 cm away or 5 cm away. Soybean yield responses in the field were greatest with P banded 2.5 cm directly below the seed on low-P soils. Placement of P 2.5 cm below the seed resulted in grain yields that were 64% and 50% higher (at the two sites) than those obtained in control plots. Sidebanding P, 2.5 cm below and 2.5 cm away from the seed at the same level of application, improved grain yields of control plots by 40% and 39%. Seed placement and broadcast applications of P were not as effective in increasing grain yields. Broadcasting P in fall or in spring at rates of up to 52.38 kg P/ha did not result in significantly higher grain yields than those obtained in control plots. Placement of P in contact with the seed appeared to reduce seedling emergence, resulting in depressed yields when 52.38 kg P/ha were applied. Key words: Glycine max L. Merrill, ’Maple Presto’


1990 ◽  
Vol 115 (1) ◽  
pp. 75-81 ◽  
Author(s):  
W. E. Finch-Savage ◽  
W. G. Pill

SUMMARYIn studies of carrots sown on three dates at Wellesbourne in 1986, mean time to seedling emergence and spread of times to seedling emergence of untreated and fluid-drilled seeds increased as seed-bed moisture at sowing decreased. These differences were not observed with irrigation before sowing.Osmotic priming increased the percentage of seeds with emerged radicles at the time of fluid drilling from 17% in the untreated control to 56%. Irrespective of seed-bed moisture, time to emergence was shorter from primed germinating seeds than from germinating seeds, both treatments giving earlier seedling emergence than untreated seeds. Seedling shoot weight was greater from treated than from untreated seeds.Seed-bed characteristics on unirrigated plots had no effect on seedling emergence when soil moisture was adequate but, where soil moisture was limiting, rolling the seed bed to increase capillarity resulted in 79% emergence compared with the 67% average from seed beds that were not rolled. Application of a soil conditioner to stabilize the seed-bed surface structure generally improved emergence when rain fell soon after sowing. The results suggested that a combination of seed-bed and seed treatments can significantly improve the predictability of crop establishment of carrots on different dates.


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1298-1304 ◽  
Author(s):  
Elisha Otieno Gogo ◽  
Mwanarusi Saidi ◽  
Jacob Mugwa Ochieng ◽  
Thibaud Martin ◽  
Vance Baird ◽  
...  

French bean [Phaseolus vulgaris (L.)] is among the leading export vegetable in Africa, mostly produced by small-scale farmers. Unfavorable environmental conditions and heavy infestations by insect pests are among the major constraints limiting production of the crop. Most French bean producers grow their crop in open fields outdoors subject to harsh environmental conditions and repeatedly spray insecticides in a bid to realize high yield. This has led to rejection of some of the produce at the export market as a result of stringent limits on maximum residue levels. Two trials were conducted at the Horticulture Research and Teaching Field, Egerton University, Kenya, to evaluate the potential of using agricultural nets (herein referred to as agronets) to improve the microclimate, reduce pest infestation, and increase the yield and quality of French bean. A randomized complete block design with five replications was used. French bean seeds were direct-seeded, sprayed with an alpha-cypermethrin-based insecticide (control), covered with a treated agronet (0.9 mm × 0.7 mm average pore size made of 100 denier yarn knitted into a mesh impregnated with alpha-cypermethrin), or covered with an untreated-agronet (0.9 mm × 0.7 mm average pore size made of 100 denier yarn knitted into a mesh not impregnated with insecticide). Alpha-cypermethrin and agronets were manufactured by Tagros Chemicals (India) and A to Z Textile Mills (Tanzania), respectively. Covering French bean with the agronets modified the microclimate of the growing crop with air temperature increased by ≈10%, relative humidity by 4%, and soil moisture by 20%, whereas photosynthetic active radiation (PAR) and daily light integral (DLI) were decreased by ≈1% and 11.5%, respectively. Populations of silverleaf whitefly [Bemisia tabaci (Gennadius)] and black bean aphids [Aphis fabae (Scopoli)] were reduced under agronet covers as contrasted with control plots. Furthermore, populations of both pests were reduced on French bean grown under impregnated agronets compared with untreated agronets, but only on three of the five sampling dates [30, 44, and 72 days after planting (DAP)] for silver leaf whitefly or at only one of the five sampling dates (30 DAP) for black bean aphid. Covering French bean with agronets advanced seedling emergence by 2 days and increased seedling emergence over 90% compared with control plots. French bean plants covered with both agronet treatments had faster development, better pod yield, and quality compared with the uncovered plants. These findings demonstrate the potential of agronets in improving French bean performance while minimizing the number of insecticide sprays within the crop cycle, which could lead to less rejection of produce in the export market and improved environmental quality.


Sign in / Sign up

Export Citation Format

Share Document