Effects of Hill Spacing, Number of Plants Per Hill and Nitrogen Supply on Growth and Yield of Rice

1965 ◽  
Vol 1 (1) ◽  
pp. 55-66
Author(s):  
B. A. C. Enyi

SummaryIn a factorial experiment with two spacings, four numbers of seedlings per hill, and two levels of nitrogen the highest numbers of shoots were produced in high nitrogen and high plant density plots. Increasing the number of seedlings per hill led to a rise in the number of shoots per plot and this was more pronounced in high than in low plant densities. Significant differences in shoot number between high and low nitrogen plots occurred only at the higher plant density, but high nitrogen and wide spacing led to an increase in the number of shoots per hill and per plant. Increasing the number of seedlings per hill resulted in an increase in the number of shoots per hill but a decrease in the number of shoots per plant. The effects of treatments on leaf blade area at ear emergence and on grain yields were similar to those on shoot number. The percentage increase in the yield of grain per unit area due to increasing the number of seedlings to three and four were 12 and 9 respectively. The percentage shoot mortality was greater in plots with low than with high plant density. Plants were higher in high nitrogen plots, especially at high plant density, while high nitrogen supply and four seedlings per hill increased the number of days from seeding to ear emergence. The former treatment also increased ear length. Low plant density and three seedlings per hill increased the ear to shoot dry weight ratio. The best combination of treatments for high grain yield was high nitrogen, 15 cm x 15 cm spacing, and four seedlings per hill.

1974 ◽  
Vol 83 (1) ◽  
pp. 125-133 ◽  
Author(s):  
P. C. Longden ◽  
R. K. Scott ◽  
D. W. Wood

SUMMARYFrom monogerm sugar-beet seed as harvested non-viable fruits have to be eliminated, multigerm ones rejected and the size made sufficiently uniform for use in precision drills. Seed which had been gently rubbed to remove some of the cortex was graded for diameter, thickness and by aspiration, either singly or in combination. Effects of grading were determined by laboratory germination tests, radiography and field sowings in which seedling emergence and crop growth and yield were recorded.Grading by thickness was effective in removing multigerm fruits. Grading by aspiration and diameter rejected non-viable seed and reduced the variation in size. By combining all three grading methods, samples of seed of 80% germination and 90% monogermity were produced, provided the seed lot as threshed gave at least 50% germination. True seed weight increased with fruit diameter but only the first aspiration was effective in removing light true seeds. Radiography showed that both aspiration and, to a less extent, grading by diameter were effective in removing most empty fruits but neither eliminated those with shrivelled seed. The field experiments confirmed that increase in fruit diameter or aspiration gave more seedlings. Even at uniform, high plant density, sugar yields were less from the smallest (less than 3 mm diameter) than from the other grades of seed. The initial aspiration also improved sugar yield but further aspiration decreased yield.


2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Al-Mohmadi & Al-Ani

A field experiment was condueted at the experimental Farm, College of Agriculture University of AL-Anbar in replace location (Abu-Gheaib) in spring season of 2017. While in Fall season it was applied at AL-saqluwiya-Anbar Province 10 km west north of Falluga city to study the effect of four levels of licorice extractor (Glycyrrhiza glabra L.) (0,2,4 and 6) g.L-1 water and three (53,333, 66,666 and 88,888 plant) plant.ha-1. On growth and grain yield of Sorghum cv. Rabih. The experiment was applied using R.C.B.D. arranged in split plots with three replications. levels of plant densities were used as main-plot, while licorice extractor were used as sub-plot. Foliar application of licorice extractor was applied during vegetative growth. The results showed that, high plant density (88888) plant.h-1 significantly increase plant height and leaf area index, while most of traits were not significantly influenced by plant density including grain yield. Results revealed that foliar application of licorice extractor with 2,4,6 g.L-1 of water significantly influenced grain yield in spring season compane with control treatment and it is amounted to (9.62, 9.55 and 9.78) t.h-1 respectively. There were significant interaction between Licorice extractor and plant density in spring and fall season in grain yield. The higher grain yield of 10.31 and 10.33 t.h-1 were obtained when sorghum plants were sowing at hight density and sprayed with Licorice extractor at level          4 g.L-1 respectively


2011 ◽  
pp. 105-108
Author(s):  
Ádám Lente

The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.


Author(s):  
Ioannis Roussis, Ioanna Kakabouki, Dimitrios Bilalis

Agronomic practices such as plant density and fertilizer management are referred to comprise crop environment, which influences plant growth, productivity, and ultimately the yield. The objective of the current study was to evaluate the influence of plant density and fertilization on the growth and growth indices of Nigella sativa crop and to determine the association between yield and growth characteristics at both the single plant and crop stand level. The 2-year experiment was laid out in a split-plot design, with three replications, two main plots (200 and 300 plants m-2) and four sub-plots (fertilization treatments: control, compost, farmyard manure and inorganic fertilizer). The highest absolute growth rate (AGR) (0.0321 g day-1) and relative growth rate (RGR) (0.0714 g g-1 day-1) values were recorded when plants subjected to low-density and inorganic fertilization, while the highest crop growth rate (CGR) (8.0342 g m-2 day-1) was obtained under high-plant density and inorganic fertilization. Concerning specific leaf area (SLA), the highest value (196.28 cm2 g-1) was found in inorganic fertilized treatment. Leaf area index (LAI), Leaf area duration (LAD) and Biomass duration (BMD) were positively affected by both plant density and fertilization with the greatest values observed under high-density and fertilization. In conclusion, plant densities higher than 200 plants m-2 lead to higher crop growth, but lower growth of individual plants and decreased seed yield, while the application of inorganic fertilizers increases crop growth and yield as these fertilizers contain higher levels of nitrogen with high solubility and therefore quick availability for the crop than the organic fertilizers.


2020 ◽  
pp. 1-12
Author(s):  
N. Magagula ◽  
M. P. Mabuza ◽  
N. Zubuko

The most appropriate plant density and planting pattern to use for optimum growth and yield of groundnuts (Arachis hypogaea L.) in Eswatini among those currently used is not known, as the patterns are highly influenced by environmental conditions in specific regions. A field trial was conducted with the objective of determining the optimum plant density and planting pattern for groundnut in the Wet Middleveld of Eswatini. The experiment was conducted at the University of Eswatini, Luyengo Campus during the 2018/2019 cropping. The treatments consisted of three planting densities (i.e. 88,889 plants/ha, 44,444 plants/ha, and 29,630 plants/ha) and two planting patterns (i.e. Ridges and Raisedbeds) in a split plot arrangement. Results showed that all the measured parameters including seed yield were not significantly different in all treatments. However, the highest seed yield was obtained at low plant density which was 71.4 kg/ha followed by 568 kg/ha at medium and the least was 434 kg/ha at high plant density. The high plant density (88889 plants/ha) obtained the highest value of dry biomass (13018 kg/ha) at ridges which was higher than 3859 kg/ha obtained at the low plant density (29630 plants/ha) at raised beds at R6 growth stage. The ridges at the intermediate plant density (44444 plants per hectare) obtained the highest shelling percentage of 59.67% while the lowest (56%) shelling percentage was obtained at raised beds at 88889 plants per hectare. It is concluded that groundnuts at raised beds with low plant density yielded higher than those at ridges with high plant density. It is therefore, recommended that groundnuts be planted at raised beds with low plant density to increase groundnut production and for ease of harvesting.


Weed Science ◽  
1982 ◽  
Vol 30 (4) ◽  
pp. 365-368 ◽  
Author(s):  
Gregory R. Mcnevin ◽  
R. Gordon Harvey

Field studies in 1978 and 1979 evaluated the effectiveness of single and combination herbicide treatments in processing peas (Pisum sativumL.) and soybeans [Glycine max(L.) Merr.] for the control of wild proso millet (Panicum miliaceumL.). Eight treatments that included dinitroaniline herbicides controlled wild proso millet adequately through the entire growing season of the early-planted peas (approximately 60 days). Wild proso millet emergence and growth in untreated peas was suppressed by the early emergence, rapid growth, and high plant density of the drill-planted crop. Trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.8 kg/ha stunted pea growth and was the only treatment that reduced yields significantly. No herbicide treatment evaluated in soybeans controlled wild proso millet adequately for the entire growing season without reducing soybean growth and yield. Treatments containing dinitroaniline herbicides, which controlled wild proso millet in peas and resulted in good yield, did not perform similarly in soybeans.


Author(s):  
Yesica C Menendez ◽  
Diego H Sanchez ◽  
Rod J Snowdon ◽  
Deborah P Rondanini ◽  
Javier F Botto

Abstract Plant density defines vegetative architecture and competition for light between individuals. Brassica napus (canola), as a model system of indeterminate growth, presents a radically different plant architecture compared to traditional crops commonly cultivated at high density. Using a panel of 152 spring-type canola accessions and a double haploid (DH) population of 99 lines from a cross between Lynx and Monty, we performed Genome-Wide-Analysis-Studies (GWAS) and Quantitative Trait Locus (QTL) mapping for 12 growth and yield traits at two contrasting plant densities (15 and 60 plants m -2). We revealed mostly novel associations by GWAS (19) and QTLs (11) for growth and yield traits being the most significant for flowering, biomass, rosette height, silique and seed number, and grain yield; often representing density-independent signals although we also uncovered some density-dependent associations typically mapping at low density. Further RNA-seq transcriptomics revealed distinctive latent gene regulatory responses to simulated shade between Lynx and Monty. Given the phylogenetic relatedness, we additionally used Arabidopsis thaliana aiming at testing genes to validate density effects of homologous counterparts mapping into relevant rapeseed QTLs. Our results suggest that TCP1 may promote the growth independently of plant neighbors, while HY5 could increase biomass and seed yield specifically at high plant density. For flowering time, the observations in tested mutants suggested that the corresponding genes may plausibly contribute to promote flowering in plant-density dependent (i.e., PIN) and independent (i.e., FT, HY5 and TCP1) manner. This work underscores the advantages of using agronomic field experiments together with genetic and transcriptomic approaches to decipher quantitative complex traits that potentially mediate superior crop productivity.


2016 ◽  
Vol 47 (5) ◽  
Author(s):  
AL-Hilfy & Al-Muger

A field experiment was conducted at the experimental field, Dept. of Field Crop , Coll. of Agric. Univ. of Baghdad during the yeans of 2010 and 2011 to study growth and yield of peanut as affected by planting methods and plant population. A factorial arrangement in RCBD design with four replications were used , with two factors, the first one: three planting methods (planting on East, West and Twin rows) and the second factor: four spacing between plants (15, 25, 35 and 45) cm. The results showed that the planting method on east produced highest dry weight (117.51, 100.64) g.plant-1, growth rate (625.10, 532.40) mg.plant-1.day-1 , seed yield per plant (25.16, 32.25)g.plant-1, protein percent (26.01, 26.20)% for both seasons respectively. Moreover planting method on twin row  gave highest pod yield (4180, 3842) kg. ha-1, oil percentage (46.00, 46.20)% for both seasons respectively. The highest plant density 15 cm between plants gave highest pods yield (3960 3031 kg.ha-1, seed yield (2328.7, 1761.0) kg. ha-1, oil percentage (46.50, 46.28)%  for both seasons, respectively. The lowest plant density 45 cm between plants gave highest dry weight (124.07, 114.07) g.plant-1, growth rate (659.90, 603.50) mg. plant-1.day-1, seed yield per plant (36.05, 31.07)g. plant-1, protein percentage (26.40, 26.20)% for both seasons, respectively. The planting method on twin row with the high plant density 15 cm gave highest seed yield (2894.1, 2542.0) kg.ha-1, while the planting method on west and the low plant density 45 cm gave the lowest seeds yield (1051.3, 912.0) kg.ha-1 for both seasons, respectively.


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1433-1437
Author(s):  
Toshio Shibuya ◽  
Ryosuke Endo ◽  
Yoshiaki Kitaya ◽  
Mizuki Tsuchida

The light competition in dense plant stands may be disadvantageous in transplant production because competition stimulates stem elongation and can reduce photosynthate allocation to leaves; this, in turn, may reduce the early growth rate after transplanting. In this study, we focused on how the proportion of far-red (FR) light affected light competition among cucumber (Cucumis sativus L.) seedlings and investigated the effects of the plant density × FR interaction on photosynthate allocation and subsequent early growth after transplanting. Seedlings at the cotyledon stage were planted into plug trays at densities ranging from 109 to 1736 plants/m2; then they were grown for 4 days under light-emitting diode (LED) light containing FR light (FR+) at approximately the same red-to-FR ratio as in sunlight (1.2) or under light containing no FR (FR−). The higher density significantly stimulated stem elongation under both FR+ and FR−, but the effect was small under FR−; this indicates that light competition in the dense stands was inhibited by reducing FR light. The higher plant density significantly increased photosynthate allocation to the stem and decreased allocation to the leaves under both FR+ and FR−; however, again, the effect was smaller under FR−. After transplanting the seedlings to pots, early growth decreased in the seedlings that allocated less photosynthate to their leaves. Our results indicate that light with reduced FR can mitigate the disadvantageous photosynthate allocation of transplants and the reduction of early growth after transplanting that are likely to occur as a result of light competition at high plant density.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Feng Wang ◽  
Jun Xue ◽  
Ruizhi Xie ◽  
Bo Ming ◽  
Keru Wang ◽  
...  

Determining the water productivity of maize is of great significance for ensuring food security and coping with climate change. In 2018 and 2019, we conducted field trials in arid areas (Changji), semi-arid areas (Qitai) and semi-humid areas (Xinyuan). The hybrid XY335 was selected for the experiment, the planting density was 12.0 × 104 plants ha−1, and five irrigation amounts were set. The results showed that yield, biomass, and transpiration varied substantially and significantly between experimental sites, irrigation and years. Likewise, water use efficiency (WUE) for both biomass (WUEB) and yield (WUEY) were affected by these factors, including a significant interaction. Normalized water productivity (WP*) of maize increased significantly with an increase in irrigation. The WP* for film mulched drip irrigation maize was 37.81 g m−2 d−1; it was varied significantly between sites and irrigation or their interaction. We conclude that WP* differs from the conventional parameter for water productivity but is a useful parameter for assessing the attainable rate of film-mulched drip irrigation maize growth and yield in arid areas, semi-arid areas and semi-humid areas. The parametric AquaCrop model was not accurate in simulating soil water under film mulching. However, it was suitable for the prediction of canopy coverage (CC) for most irrigation treatments.


Sign in / Sign up

Export Citation Format

Share Document