scholarly journals EFFECT OF SPRAYING WITH DIFFERENT CONCENTRATION OF LICORICE EXTRACT AND PLANT DENSITIES IN GROWTH AND YIELD OF SORGHUM BICOLOR L.

2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Al-Mohmadi & Al-Ani

A field experiment was condueted at the experimental Farm, College of Agriculture University of AL-Anbar in replace location (Abu-Gheaib) in spring season of 2017. While in Fall season it was applied at AL-saqluwiya-Anbar Province 10 km west north of Falluga city to study the effect of four levels of licorice extractor (Glycyrrhiza glabra L.) (0,2,4 and 6) g.L-1 water and three (53,333, 66,666 and 88,888 plant) plant.ha-1. On growth and grain yield of Sorghum cv. Rabih. The experiment was applied using R.C.B.D. arranged in split plots with three replications. levels of plant densities were used as main-plot, while licorice extractor were used as sub-plot. Foliar application of licorice extractor was applied during vegetative growth. The results showed that, high plant density (88888) plant.h-1 significantly increase plant height and leaf area index, while most of traits were not significantly influenced by plant density including grain yield. Results revealed that foliar application of licorice extractor with 2,4,6 g.L-1 of water significantly influenced grain yield in spring season compane with control treatment and it is amounted to (9.62, 9.55 and 9.78) t.h-1 respectively. There were significant interaction between Licorice extractor and plant density in spring and fall season in grain yield. The higher grain yield of 10.31 and 10.33 t.h-1 were obtained when sorghum plants were sowing at hight density and sprayed with Licorice extractor at level          4 g.L-1 respectively

Author(s):  
Ioannis Roussis, Ioanna Kakabouki, Dimitrios Bilalis

Agronomic practices such as plant density and fertilizer management are referred to comprise crop environment, which influences plant growth, productivity, and ultimately the yield. The objective of the current study was to evaluate the influence of plant density and fertilization on the growth and growth indices of Nigella sativa crop and to determine the association between yield and growth characteristics at both the single plant and crop stand level. The 2-year experiment was laid out in a split-plot design, with three replications, two main plots (200 and 300 plants m-2) and four sub-plots (fertilization treatments: control, compost, farmyard manure and inorganic fertilizer). The highest absolute growth rate (AGR) (0.0321 g day-1) and relative growth rate (RGR) (0.0714 g g-1 day-1) values were recorded when plants subjected to low-density and inorganic fertilization, while the highest crop growth rate (CGR) (8.0342 g m-2 day-1) was obtained under high-plant density and inorganic fertilization. Concerning specific leaf area (SLA), the highest value (196.28 cm2 g-1) was found in inorganic fertilized treatment. Leaf area index (LAI), Leaf area duration (LAD) and Biomass duration (BMD) were positively affected by both plant density and fertilization with the greatest values observed under high-density and fertilization. In conclusion, plant densities higher than 200 plants m-2 lead to higher crop growth, but lower growth of individual plants and decreased seed yield, while the application of inorganic fertilizers increases crop growth and yield as these fertilizers contain higher levels of nitrogen with high solubility and therefore quick availability for the crop than the organic fertilizers.


2019 ◽  
Vol 11 (4) ◽  
pp. 823-829
Author(s):  
Ganpat Louhar

Wheat is one of the most important cereal crop and staple foods in the world. Increase in productivity of wheat by balance nutrient management is one of the most crucial factors. The main objective this study is to assessing the role of micronutrients in improving different components of wheat yield. There are different methods of application such as seed priming, soil application and fortification but foliar application is more beneficial. This is due to response of foliar application has positive and quadrate in nature i.e. the optimum dose of foliar application of zinc for grain yield of wheat was observed as 0.04%. Among treatments of micronutrient alone or combined forms give better results over control. Results have show that micronutrient application substantially improved leaf area index (LAI), leaf area duration, CGR (Crop growth rate), RGR (Relative growth rate), NAR (Net assimilation rate), plant height, spike length, spikelets/spike, grains/spike, test weight, tillers m-2, grain yield, chlorophyll content and biological yield as well as harvest index of wheat. The yield and quality of wheat products improved and boosted by micronutrient applications. Therefore, human and animal health will be protected with the feed of enriched and balanced nutrition of produce as well as it will help in facing the severe global food security.


2019 ◽  
Vol 50 (Special) ◽  
Author(s):  
Baqir & Al-Naqeeb

 The objective of this study was to investigate the effect of some amino acids on tillering and grain yield of bread wheat cultivars. A field experiment was carried out at the agricultural experiment station, College of Agriculture Engineering Sciences, University of Baghdad during the two winter seasons, 2016-2017 and 2017-2018. Randomized Complete Block Design within split plots arrangement was used in three replicates. The experiment included two factors, the first (main plots) was the wheat cultivars (IPA 99, Buhooth 22, and Abu-Graib3) and the second (sub-plots) was foliar application three amino acids (L-Tryptophan, L-Glycine, and L-Lysine) with concentrations 50 and 100 mg L-1 and the amino acid L-Cystine at 100 and 150 mg L-1 and control treatment. The treatments of foliar application were applied during two growth stages, the first was when the main stem had three leaves (ZGS: 13) and the second was when the plant entered the flowering stage (ZGS: 60). Results showed the significant superiority of Buhooth 22 in most growth traits, which produced the highest number of tillers.m-2 (556.30 and 568.15 tillers m-2), number of spikes (476.74 and 494.19 spikes m-2), weight of 1000 grains (31.09 and 32.43 g), and grain yield (5.39 and 5.15 Mg ha-1) for the two seasons respectively. The treatment of foliar application L-Tryptophan at 50 mg L-1 was significantly superior in most traits of yield components which produced the highest values of the number of tillers (616.89 and 627.78 tillers m-2), number of spikes (477.00 and 944.67 spikes m-2), weight of 1000 grains (32.01 and 33.55g), and grain yield (5.77 and 5.33Mg ha-1) in the two seasons, respectively. The response of wheat cultivar growth and yield to amino acids differed significantly.      


2020 ◽  
Vol 2 (1) ◽  
pp. p263
Author(s):  
Shahnaz Parveen ◽  
Mohammad Issak ◽  
Md. Sohanur Rahman ◽  
Fakhar Uddin Talukder ◽  
Shanta Islam

Objective of this study was to examine and evaluate the role of different rates of salicylic acid (SA) as foliar spray on growth and yield performance of BRRI dhan29. The experiment was conducted at Sher-e-Bangla Agricultural University, Bangladesh from November, 2016 to May, 2017 following a randomized complete block design with five rates of SA in six replications. The results showed that the lower rate of SA (upto 0.75 mM) has a positive effect on rice biomass production including effective tiller per hill, filled grain per panicle, grain yield and straw yield. The highest dry matter production at both maximum tillering and panicle initiation stages was found at SA spray rate of 0.5 mM. The highest number of effective tillers per hill (14.7) as well as the highest filled grain (120.4) and grain yield (8.1 t/ha) were found at SA rate of 0.75 mM. However, the maximum biomass production was obtained at SA rate of 0.25 mM. The minimum grain yield (7.0 t/ha) was observed in the control treatment.


Author(s):  
Ejaz Ahmad Khan ◽  
Iqtidar Hussain ◽  
Sheryar . ◽  
Hafiz Bashir Ahmad ◽  
Iqbal Hussain

Although,chickpea isnitrogen fixing crop but water scarcity under rain-fed condition reduces its nodulation process severely and nutrients use efficiency too. An experiment was carried out regarding the combined effect of nipping as well as foliar applied fertilizers on yield and yield components of chickpea under rain-fed conditions. Nipping and foliar application of nutrients significantly improved number of pods plant-1, biological yield (kg ha-1), harvest index (%) and final grain yield (kg ha-1). However, non-significant influence was seen in 1000-grain weight and number of grains pod-1. Foliar application of N PK (20:20:20) @2.5 kg ha-1 × nipping was found to be the best interaction among others which significantly increased number of branches plant-1 (11.30), number of pods plant-1(115.36), plant height(59.48cm) and grain yield(2338.9 kg ha-1) as compared to the control treatment. Nipping along with foliar application of NPKcan be practiced in chickpea for higher profitability.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1657
Author(s):  
Shimaa A. Badawy ◽  
Bassiouni A. Zayed ◽  
Sherif M. A. Bassiouni ◽  
Ayman H. A. Mahdi ◽  
Ali Majrashi ◽  
...  

Rice production under salinity stress is a critical challenge facing many countries, particularly those in arid and semi-arid regions. This challenge could be handled by applying novel approaches to overcome yield limiting factors and improve resource use efficiency. The usage of nanoparticles (NPs) could be a beneficial approach to managing the growing problem of soil salinity. The aim of our study was to investigate the advantageous effects of soaking and foliar application of silicon (Si) and selenium (Se), (NPs-Si at 12.5 mg L−1 and NPs-Se at 6.25 mg L−1) on root characteristics, moropho-physiological traits, and yields of two rice varieties (i.e., Giza 177 as a salt sensitive and Giza 178 as a salt tolerant) grown in saline soil compared to untreated plants (control treatment). Results showed that soaking NPs-Se resulted in the highest value of root thickness for Giza 178 (0.90 mm, 0.95 mm) and root volume (153.30 cm3, 154.30 cm3), while Giza 177 recorded 0.83 mm, 0.81 mm for root thickness and 143.30 cm3, 141.30 cm3 for root volume in the 2018 and 2019 seasons, respectively. Soaking NPs-Se, NPs-Si and foliar application of NPs-Se at BT resulted in the highest relative water content and dry matter, while foliar application of NPs-Si at BT gave the highest leaf area index of rice plants compared to the other treatments. Giza 178 (i.e., salt tolerant variety) significantly surpassed Giza 177 (i.e., salt sensitive variety) in the main yield components such as panicle number and filled grains/ panicle, while Giza 177 significantly exceeded Giza 178 in the panicle weight, 1000-grain weight, and unfilled grains number/ panicle. Soaking NPs-Se and foliar application of NPs-Si at BT resulted in the highest grain yield of 5.41 and 5.34 t ha−1 during 2018 and 5.00 and 4.91 t ha−1 during 2019, respectively. The salt sensitive variety (Giza 177) had the highest Na+ leaf content and Na+/K+ ratio as well as the lowest K+ leaf content during both seasons. Applying nano nutrients such as NPs-Si and NPs-Se improved the yield components of the salt sensitive variety (Giza 177) by enhancing its ion selectivity. Both NPs-Si and NPs-Se had almost the same mode of action to mitigate the harmful salinity and enhance plant growth, and subsequently improved the grain yield. In summary, the application of NPs-Si and NPs-Se is recommended as a result of their positive influence on rice growth and yield as well as minimizing the negative effects of salt stress.


2016 ◽  
Vol 8 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Catherine Waithira Njuguna ◽  
Hellen Wangechi Kamiri ◽  
John Robert Okalebo ◽  
Wilson Ngetich ◽  
Syphilline Kebeney

Abstract Maize is the main staple food in Kenya with over 90% of Kenyans relying on it. While the annual national consumption is increasing, the production of this crop has been on the decline in the last two decades. Maize production in Kenya fell by 33.4% in 2013 with Nyeri among the counties said to be grappling with the production of this crop. Land pressure is one of the major causes of decreased availability of food as well as soil depletion and encroachment upon fragile ecosystems such as wetlands. Nitrogen is a key nutrient in the production of maize, and its deficiency is a major factor limiting its production. This study investigated the effect of N application at 120 kg N/ha and maize density on the Leaf Area Index in reclaimed wetland soils in an experimental set-up comprising a randomized complete block design with three replications. The research was carried out in Nyeri County, Kenya. Leaf Area Index (LAI) was determined using the given SunScan formula. Measurements were done continuously until crop physiological maturity. Results indicated that the leaf area index increased with nitrogen application and reduced with spacing for most treatments. There were no significant differences between the two methods (Copy Method and SunScan). Leaf Area Index (LAI) was high in treatments containing nitrogen and high plant density. It was concluded that high plant density gives high LAI. 50 cm * 12.5 cm (-N) and 50 cm * 12.5 cm (+N) are the recommended plant densities for the site.


1986 ◽  
Vol 106 (1) ◽  
pp. 37-40
Author(s):  
H. S. Grewal ◽  
H. S. Gill

SUMMARYField experiments were carried out at Ludhiana in Punjab during 1982 and 1983 on the effect of foliar application of water spray or naphthalene acetic acid (NAA) at 100 and 200 mg/1 of water on the growth and yield of rice when applied at tillering and before panicle emergence stages of late-transplanted paddy grown under four levels of nitrogen (0, 60, 90 and 120 kg/ha). Foliar spray of NAA significantly increased the grain yield of paddy as compared with water spray under low levels of nitrogen (0 and 60 kg/ha) owing to increases in the number of ear-bearing shoots per plant, number of filled grains per panicle and grain weight. Chlorophyll content of leaves, leaf area index and interception of photosynthetically active radiation by the crop canopy also increased with foliar spray of NAA and application of nitrogen. Paddy responded significantly up to 90 kg N/ha in terms of grain yield whereas straw yield increased significantly up to 120 kg N/ha. However, grain mass declined significantly with increase in nitrogen from 90 to 120 kg/ha.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1140 ◽  
Author(s):  
Mohamed M. Kamara ◽  
Medhat Rehan ◽  
Khaled M. Ibrahim ◽  
Abdullah S. Alsohim ◽  
Mohsen M. Elsharkawy ◽  
...  

Knowledge of combining ability and genetic diversity are important prerequisites for the development of outstanding hybrids that are tolerant to high plant density. This work was carried out to assess general combining ability (GCA) and specific combining ability (SCA), identify promising hybrids, estimate genetic diversity among the inbred lines and correlate genetic distance to hybrid performance and SCA across different plant densities. A total of 28 F1 hybrids obtained by crossing eight adverse inbred lines (four local and four exotic) were evaluated under three plant densities 59,500 (D1), 71,400 (D2) and 83,300 (D3) plants ha−1 using spilt plot design with three replications at two locations during 2018 season. Increasing plant density from D1 to D3 significantly decreased leaf angle (LANG), chlorophyll content (CHLC), all ear characteristics and grain yield per plant (GYPP). Contrarily, days to silking (DTS), anthesis–silking interval (ASI), plant height (PLHT), ear height (EHT), and grain yield per hectare (GYPH) were significantly increased. Both additive and non-additive gene actions were involved in the inheritance of all the evaluated traits, but additive gene action was predominant for most traits. Inbred lines L1, L2, and L5 were the best general combiners for increasing grain yield and other desirable traits across research environments. Two hybrids L2 × L5 and L2 × L8 were found to be good specific combiners for ASI, LANG, GYPP and GYPH. Furthermore, these hybrids are ideal for further testing and promotion for commercialization under high plant density. Genetic distance (GD) among pairs of inbred lines ranged from 0.31 to 0.78, with an average of 0.61. Clustering based on molecular GD has effectively grouped the inbred lines according to their origin. No significant correlation was found between GD and both hybrid performance and SCA for grain yield and other traits and proved to be of no predictive value. Nevertheless, SCA could be used to predict the hybrid performance across all plant densities. Overall, this work presents useful information regarding the inheritance of maize grain yield and other important traits under high plant density.


2018 ◽  
Vol 49 (6) ◽  
Author(s):  
Abood & Salh

 A field experiment was conducted at the fields of Agriculture College , Anbar University, (alternative site Abu Ghraib) during  spring and fall seasons of 2017, to study the effect of soil and foliar application of potassium (140 kg.ha-1, 500, 1000 and 1500 mg-L-1) on growth and yield of three varieties of sorghum (Lelo, Inkath and Ishtar), The experiment was carried out according to the design of  (R.C.B.D) and in order of the split arrangement with three replicates.  Results shows, the cultivar Ishtar was superior in most studied characters such as plant height and leaf area ​​148.67, 152.25 cm, 5210, 4767 cm2.plant-1, in two seasons, respectively. The same cultivar gave the lowest number of days (from planting to 100% flowering), also it gave highest grain yield and highest harvest index which was 81.83 days and 4.93 ton.ha-1 and 25.15% respectively in spring season only. While the two varieties Lelo and Ishtar gave the lowest content of proline  leaves (2.11 and 0.18 mg.gm-1) in spring and fall seasons respectively. The highest concentration of potassium (1000mg L-1) was superior in plant height, leaf area and  grain yield (150.89, 155.78 cm, 5075, 4812 cm2 plant -1, 5.56, and 8.32 ton.ha-1) in two seasons  respectively.


Sign in / Sign up

Export Citation Format

Share Document