scholarly journals Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 97
Author(s):  
Feng Wang ◽  
Jun Xue ◽  
Ruizhi Xie ◽  
Bo Ming ◽  
Keru Wang ◽  
...  

Determining the water productivity of maize is of great significance for ensuring food security and coping with climate change. In 2018 and 2019, we conducted field trials in arid areas (Changji), semi-arid areas (Qitai) and semi-humid areas (Xinyuan). The hybrid XY335 was selected for the experiment, the planting density was 12.0 × 104 plants ha−1, and five irrigation amounts were set. The results showed that yield, biomass, and transpiration varied substantially and significantly between experimental sites, irrigation and years. Likewise, water use efficiency (WUE) for both biomass (WUEB) and yield (WUEY) were affected by these factors, including a significant interaction. Normalized water productivity (WP*) of maize increased significantly with an increase in irrigation. The WP* for film mulched drip irrigation maize was 37.81 g m−2 d−1; it was varied significantly between sites and irrigation or their interaction. We conclude that WP* differs from the conventional parameter for water productivity but is a useful parameter for assessing the attainable rate of film-mulched drip irrigation maize growth and yield in arid areas, semi-arid areas and semi-humid areas. The parametric AquaCrop model was not accurate in simulating soil water under film mulching. However, it was suitable for the prediction of canopy coverage (CC) for most irrigation treatments.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 752
Author(s):  
Li ◽  
Qu ◽  
Chen ◽  
Yang ◽  
Huang

A field experiment was conducted to test the suitability of growing sunflower undermulched drip irrigation with saline water in the HID (Hetao Irrigation District), North China. Theexperiment included five planting densities in which the plant spacing was 30, 35, 40, 45, and 50 cmwith the same spacing (50 cm) between rows. The results indicated that mulched drip irrigationwith saline water was more water‐saving than traditional ground irrigation using fresh water, whilethe irrigation quota increased with the increase of planting density. Little difference of soilsalinization was found for the treatments in the 50–100 cm soil layer, which indicated that additionalmeasures should be taken for salt balance with saline water irrigation. The height and leaf area index(LAI) of sunflower increased in response to the increase of plant density, and the head dry mattertransferred to the stem at plant densities higher than 47,619 plants/hm2. Though the grain weightand 1000‐seed weight decreased with increasing plant density, the achene yield and biomassproduction increased. This research suggests that a plant spacing of 35 cm with 50 cm of row spacingis more suitable for sunflower mulched drip irrigation with saline water at concentrations of 3.0g∙L−1.


Author(s):  
M. Roja ◽  
K. S. Kumar ◽  
V. Ramulu ◽  
Ch. Deepthi

FAO AquaCrop is a simulation model that predicts the effects of soil, climate, water and crop growth on water productivity, yield and its attributes of various crops. In the present study, performance evaluation of AquaCrop model for maize was assessed for rabi maize during 2015 at Water Technology Centre, College of Agriculture, Rajendranagar, Hyderabad. The experiment was laid in a randomized block design with eight treatments in three replications. The treatments comprised of surface and drip irrigation schedules based on Epan viz., surface irrigation at 0.6 IW/CPE ratio (T1), 0.8 IW/CPE ratio (T2), 1.0 IW/CPE ratio (T3), 1.2 IW/CPE ratio (T4), drip irrigation at 0.6 Epan (T5), 0.8 Epan (T6), 1.0 Epan (T7) and 1.2 Epan (T8). The model was evaluated using crop data resulted from the experiment under varying water application methods and levels. Simulation performance was assessed with statistical parameters viz., statistical co-efficient of determination (R2), prediction error (Pe), model efficiency (E), root mean square error (RMSE) and mean absolute error (MAE). The model results are in quite agreement with practical values for grain yield, biomass and water productivity with model efficiency of 0.99, 0.92 and 0.71, coefficient of determination (R2) of 0.90, 0.91 and 0.93 with an RMSE of 0.24, 0.10 and 0.05, respectively. The model prediction errors in simulation of grain yield, biomass and water productivity under all treatments ranged from 1.4% to 11.9%, 1.4% to 16.1% and 4.85% to 25.9%, respectively. The highest and lowest prediction accuracy for grain yield, biomass and water productivity were in drip irrigation at 1.2 Epan and surface irrigation at 0.6 IW/CPE ratios. It is inferred that FAO AquaCrop model is suitable for predicting grain yield, biomass, water productivity and green canopy cover with acceptable range of under and over predictions for maize in semi-arid tropical climate.


2015 ◽  
Vol 66 (2) ◽  
pp. 224 ◽  
Author(s):  
Cristina Patanè ◽  
Alessandro Saita

A 2-year study was conducted to examine the impact of deficit irrigation on dry biomass, water-use efficiency (WUE), fruit yield and quality in open-field processing tomato at high plant density in a semi-arid environment. Three irrigation treatments (nil; and 100% (full) and 50% (deficit) restoration of crop evapotranspiration (ETc), respectively) and two plant densities (2.5 (P1) and 5.0 (P2) plants m–2) were studied. Dry biomass and fruit yield per plant were lower in P2 than in P1, but at high plant density the crop compensated for biomass and yield decrease at the plant level. Fruit yield in P2 was greater than that in P1, by 36% in 2004 and 33% in 2005. Water limitation improved quality traits compared with full irrigation. Deficit irrigation, especially in P2, enhanced WUE and allowed a water saving of >45% relative to full irrigation, while keeping high levels of fruit quality. The yield response factor, Ky, which correlates relative fruit yield losses to relative ETc reduction, was higher (0.63) than Kss (0.44), which correlates relative total dry biomass losses to relative ETc reduction, revealing a greater crop sensitivity to soil-water deficit in terms of fruit yield than dry biomass. Therefore, Ky may of use in identifying the plant density at which water productivity is maximised or yield losses are minimised.


Author(s):  
Guotao Yang ◽  
Xuechun Wang ◽  
Farhan Nabi ◽  
Hongni Wang ◽  
Changkun Zhao ◽  
...  

AbstractThe architecture of rice plant represents important and complex agronomic traits, such as panicles morphology, which directly influence the microclimate of rice population and consequently grain yield. To enhance yield, modification of plant architecture to create new hybrid cultivars is considered a sustainable approach. The current study includes an investigation of yield and microclimate response index under low to high plant density of two indica hybrid rice R498 (curved panicles) and R499 (erect panicles), from 2017 to 2018. The split-plot design included planting densities of 11.9–36.2 plant/m2. The results showed that compared with R498, R499 produced a higher grain yield of 8.02–8.83 t/ha at a higher planting density of 26.5–36.2 plant/m2. The response index of light intensity and relative humidity to the planting density of R499 was higher than that of R498 at the lower position of the rice population. However, the response index of temperature to the planting density of R499 was higher at the upper position (0.2–1.4%) than at the lower position. Compared with R498, R499 at a high planting density developed lower relative humidity (78–88%) and higher light intensity (9900–15,916 lx) at the lower position of the rice population. Our finding suggests that erect panicles are highly related to grain yield microclimatic contributors under a highly dense rice population, such as light intensity utilization, humidity, and temperature. The application of erect panicle rice type provides a potential strategy for yield improvement by increasing microclimatic conditions in rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adnan Noor Shah ◽  
Mohsin Tanveer ◽  
Asad Abbas ◽  
Mehmet Yildirim ◽  
Anis Ali Shah ◽  
...  

High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.


2018 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Amanuel A. Gebru ◽  
Alemiea Araya ◽  
Solomon Habtu ◽  
Tsegay Wolde Georgis ◽  
Daniel Teka ◽  
...  

1965 ◽  
Vol 1 (1) ◽  
pp. 55-66
Author(s):  
B. A. C. Enyi

SummaryIn a factorial experiment with two spacings, four numbers of seedlings per hill, and two levels of nitrogen the highest numbers of shoots were produced in high nitrogen and high plant density plots. Increasing the number of seedlings per hill led to a rise in the number of shoots per plot and this was more pronounced in high than in low plant densities. Significant differences in shoot number between high and low nitrogen plots occurred only at the higher plant density, but high nitrogen and wide spacing led to an increase in the number of shoots per hill and per plant. Increasing the number of seedlings per hill resulted in an increase in the number of shoots per hill but a decrease in the number of shoots per plant. The effects of treatments on leaf blade area at ear emergence and on grain yields were similar to those on shoot number. The percentage increase in the yield of grain per unit area due to increasing the number of seedlings to three and four were 12 and 9 respectively. The percentage shoot mortality was greater in plots with low than with high plant density. Plants were higher in high nitrogen plots, especially at high plant density, while high nitrogen supply and four seedlings per hill increased the number of days from seeding to ear emergence. The former treatment also increased ear length. Low plant density and three seedlings per hill increased the ear to shoot dry weight ratio. The best combination of treatments for high grain yield was high nitrogen, 15 cm x 15 cm spacing, and four seedlings per hill.


Sign in / Sign up

Export Citation Format

Share Document