GRAIN FILLING OF DURUM WHEAT THROUGH ASSIMILATE REMOBILISATION UNDER SEMI-ARID CONDITIONS

2012 ◽  
Vol 49 (2) ◽  
pp. 197-211 ◽  
Author(s):  
K. LATIRI ◽  
J. P. LHOMME ◽  
D. W. LAWLOR

SUMMARYIn a context of understanding the physiological mechanisms and cultivar traits which could improve durum wheat (Triticum durum) yield in water limited conditions, the paper focuses on the contribution of stored assimilates to grain growth and yield. A conceptual model describing the different fluxes of assimilate during the grain filling period is used together with a dataset from field experiments made in northern Tunisia during two growing seasons and under different conditions of water and nitrogen supply. Three types of behaviour have been encountered in relation to the balance between demand for assimilate and supply. Remobilisation of stored assimilates provides a buffer enabling grain growth to be maintained. Conditions at anthesis play an important role in determining the type of fluxes of assimilates. Grain number also plays a major role in short- or long-term remobilisation and grain number per ear increases short-term remobilisation. In rain-fed conditions, short-term remobilisation allows faster grain growth.

1974 ◽  
Vol 83 (2) ◽  
pp. 213-221 ◽  
Author(s):  
P. R. Goldsworthy ◽  
M. Colegrove

SUMMARYThe growth and yield of five highland varieties of tropical maize were studied. Grain yields were between 4·7 and 8·8 t/ha. Crop growth rates (C) increased to a maximum of between 25 and 35 g/m2/day at silking and then declined. Grain growth rates (maximum 21 g/m2/day) exceeded current C during most of the grain-filling period.After silking, when C exceeded grain growth rate, dry matter accumulated in the stem and husk, resulting in an increase of from 200 to 600 g/m2. Later, as grain growth rate increased and exceeded current C, some of this accumulated material was incorporated into the grain, and stem weight decreased. A comparison of the dry weight changes after flowering in these varieties with those reported for a hybrid that yielded 12 t grain/ha indicates that the smaller yield of the Mexican varieties was associated with smaller grain growth rates and the incorporation into the grain of a smaller fraction of the dry weight produced after flowering. These results suggest that the capacity of the grain ‘sink’ to utilize assimilates limited yields in the tropical varieties.


1978 ◽  
Vol 26 (2) ◽  
pp. 210-231 ◽  
Author(s):  
J.H.J. Spiertz ◽  
J. Ellen

Grain growth and yield components of winter wheat cv. Lely were studied in a field experiment in 1976 with 4 rates of N (50, 100, 100 + 50 or 100 + 100 kg N/ha). Growing conditions were characterized by a high level of solar radiation, warmth, ample nutrient supply and no damage by diseases. N raised grain number/m2 from 16 700 to 20 600 and grain yield from 640 to 821 g dry wt./m2. Grain growth duration was short, due to warmth, but the rate of the grain filling was very high (from 24.0 to 29.2 g/m2 day during the effective grain-filling period). A high grain yield was associated with a high grain N content which resulted in a grain protein yield ranging from 63.8 to 107.1 g/m2 with increased N rate from 50 to 200 kg/ha. The carbohydrate demand of the grains was provided by current photosynthesis and relocation of stem reserves. The latter was reflected in a decline of the stem wt. after the mid-kernel filling stage. N and P demands of the grains were supplied by withdrawal from the vegetative organs (leaves, stem, chaff) and to a large extent by post-floral uptake and assimilation. Under the prevailing growing conditions the grains turned out to be very strong sinks for carbohydrate, N and P as shown by the harvest indices. Additional N dressings increased the harvest indices of DN, N and P from 0.40 to 0.48, from 0.75 to 0.81 and from 0.91 to 0.93 resp. It was suggested that a more restricted vegetative crop development at high N levels and a longer duration of root activity, photosynthesis and grain growth after anthesis would considerably favour grain yield. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1974 ◽  
Vol 83 (2) ◽  
pp. 223-230 ◽  
Author(s):  
P. R. Goldsworthy ◽  
A. F. E. Palmer ◽  
D. W. Sperling

SUMMARYThe growth and yield of three tropical varieties of maize were studied at two elevations in Mexico: Poza Rica (60m) and Tlaltizapan (940m). Grain yields were between 3·5 and 8·5 t/ha. The growing period was longer and the crop produced more dry weight and yield at Tlaltizapan than at Poza Rica. Crop growth rates (C) increased to a maximum of about 35 g/m2/day at both sites and then declined. Grain growth rates (maximum 35 g/m2/day) exceeded current C during most of the grain filling period. After silking when C exceeded grain growth, dry matter accumulated in the stem. Later as grain growth increased and exceeded C, some of the accumulated material was incorporated into the grain and stem weight decreased. The dry weight increase after flowering was similar at the two sites, but the grain yield at Tlaltiapan was larger because a larger proportion of the dry weight increase was incorporated into the grain than at Poza Rica. The results indicate that at both sites grain ‘sink’ capacity was limiting yield.


1996 ◽  
Vol 23 (6) ◽  
pp. 739 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Short periods of very high temperature (> 35�C) are common during the grain filling period of wheat, and can significantly alter mature protein composition and consequently grain quality. This study was designed to determine the stage of grain growth at which fractional protein accumulation is most sensitive to a short heat stress, and to examine whether varietal differences in heat tolerance are expressed consistently throughout the grain filling period. Two varieties of wheat differing in heat tolerance (cvv. Egret and Oxley, tolerant and sensitive, respectively) were exposed to a short (5 day) period of very high temperature (40�C max, for 6 h each day) at 5-day intervals throughout grain filling, from 15 to 50 days after anthesis. Grain samples were taken throughout grain growth and analysed for protein content and composition (albumin/globulin, monomer, SDS-soluble polymer and SDS-insoluble polymer) using size-exclusion high-performance liquid chromatography. The timing of heat stress exerted a significant influence on the accumulation of total wheat protein and its fractions, and protein fractions differed in their responses to the timing of heat stress. Furthermore, wheat genotype influenced both the sensitivity of fractional protein accumulation to heat stress and the stage during grain filling at which maximum sensitivity to heat stress occurred.


Genetika ◽  
2012 ◽  
Vol 44 (3) ◽  
pp. 499-512 ◽  
Author(s):  
Novo Przulj ◽  
Vojislava Momcilovic

Environmental conditions in the Pannonian zone can be characterized with moderate high temperature and partially water deficit during grain filling of spring barley, although low temperature and water deficit are possible also in period till anthesis. This study was conducted to evaluate the variation of the duration of the period from emergence to anthesis (VP), duration of grain filling period (GFP), plant height (PH), spikes number m-2 (SN), grains number spike-1 (GN), thousand grains weight (GW) and yield (YIL) in spring two-rowed barley in conditions of the Pannonian zone. All three factors; genotype, environment and the interaction GxY affected the studied traits. Average VP was 777 GDD, GFP 782 GDD, PH 78 cm, SN 523, GN 28.2, GW 43.2 g and YIL 6.26 t ha-1. Variation across varieties was higher than across growing seasons. Heritability varied from 0.66 for YIL to 0.94 for VP and GFP. This study confirmed that a sufficiently large genetic variability must be base for selecting appropriate varieties for the Pannonian zone conditions. In order to determine high yielding and quality barley extensive research in relation to breeding, variety choice for production and growing practice must be done.


2019 ◽  
Author(s):  
Hongying Yu ◽  
Zhenzhu Xu ◽  
Guangsheng Zhou ◽  
Yao Shou

Abstract. Climate change severely impacts grassland carbon cycling, especially in arid ecosystems, such as desert steppes. However, little is known about the responses of soil respiration (Rs) to different warming magnitudes and watering pulses in situ in desert steppes. To examine their effects on Rs, we conducted long-term moderate warming, short-term acute warming and watering field experiments in a desert grassland of Northern China. While experimental warming significantly reduced Rs by 32.5 % and 40.8 % under long-term and moderate and short-term and acute warming regimes, respectively, watering pulses stimulated it substantially. Warming did not change the exponential relationship between Rs and soil temperature, whereas the relationship of Rs with soil water content (SWC) was well fitted to the Gompertz function. The soil features were not significantly affected by either long-term or short-term warming regimes, respectively; however, soil organic carbon content tended to decrease with long-term climatic warming. This indicates that soil carbon release responses strongly depend on the duration and magnitude of climatic warming, which may be driven by SWC and soil temperature. The results of this study highlight the great dependence of soil carbon emission on warming regimes of different durations and the important role of precipitation pulse during growing season in assessing the terrestrial ecosystem carbon balance and cycle.


1977 ◽  
Vol 4 (5) ◽  
pp. 785 ◽  
Author(s):  
I Sofield ◽  
LT Evans ◽  
MG Cook ◽  
IF Wardlaw

Controlled-environment conditions were used to examine the effects of cultivar and of temperature and illuminance after anthesis on grain setting and on the duration and rate of grain growth. After an initial lag period, which did not differ greatly between cultivars, grain dry weight increased linearly under most conditions until final grain weight was approached. Growth rate per grain depended on floret position within the ear, varied between cultivars (those with larger grains at maturity having a faster rate), and increased with rise in temperature. With cultivars in which grain number per ear was markedly affected by illuminance, light had relatively little effect on growth rate per grain. With those in which grain number was less affected by illuminance, growth rate per grain was highly responsive to it, especially in the more distal florets. In both cases there was a close relation between leaf photosynthetic rate as influenced by illuminance, the rate of grain growth per ear, and final grain yield per ear. The duration of linear grain growth, on the other hand, was scarcely influenced by illuminance, but was greatly reduced as temperature rose, with pronounced effects on grain yield per ear. Cultivars differed to some extent in their duration of linear growth, but these differences accounted for less of the difference in final weight per grain than did those in rate of grain growth. Under most conditions the cessation of grain growth did not appear to be due to lack of assimilates.


2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.


2020 ◽  
Vol 17 (3) ◽  
pp. 781-792 ◽  
Author(s):  
Hongying Yu ◽  
Zhenzhu Xu ◽  
Guangsheng Zhou ◽  
Yaohui Shi

Abstract. Climate change severely impacts the grassland carbon cycling by altering rates of litter decomposition and soil respiration (Rs), especially in arid areas. However, little is known about the Rs responses to different warming magnitudes and watering pulses in situ in desert steppes. To examine their effects on Rs, we conducted long-term moderate warming (4 years, ∼3 ∘C), short-term acute warming (1 year, ∼4 ∘C) and watering field experiments in a desert grassland of northern China. While experimental warming significantly reduced average Rs by 32.5 % and 40.8 % under long-term moderate and short-term acute warming regimes, respectively, watering pulses (fully irrigating the soil to field capacity) stimulated it substantially. This indicates that climatic warming constrains soil carbon release, which is controlled mainly by decreased soil moisture, consequently influencing soil carbon dynamics. Warming did not change the exponential relationship between Rs and soil temperature, whereas the relationship between Rs and soil moisture was better fitted to a sigmoid function. The belowground biomass, soil nutrition, and microbial biomass were not significantly affected by either long-term or short-term warming regimes, respectively. The results of this study highlight the great dependence of soil carbon emission on warming regimes of different durations and the important role of precipitation pulses during the growing season in assessing the terrestrial ecosystem carbon balance and cycle.


2019 ◽  
Vol 22 (4) ◽  
pp. 440-455 ◽  
Author(s):  
Anna Girard ◽  
Marcel Lichters ◽  
Marko Sarstedt ◽  
Dipayan Biswas

Ambient scents are being increasingly used in different service environments. While there is emerging research on the effects of scents, almost nothing is known about the long-term effects of consumers’ repeated exposure to ambient scents in a service environment as prior studies on ambient scents have been lab or field studies examining short-term effects of scent exposure only. Addressing this limitation, we examine the short- and long-term effects of ambient scents. Specifically, we present a conceptual framework for the short- and long-term effects of nonconsciously processed ambient scent in olfactory-rich servicescapes. We empirically test this framework with the help of two large-scale field experiments, conducted in collaboration with a major German railway company, in which consumers were exposed to a pleasant, nonconsciously processed scent. The first experiment demonstrates ambient scent’s positive short-term effects on consumers’ service perceptions. The second experiment—a longitudinal study conducted over a 4-month period—examines scent’s long-term effects on consumers’ reactions and demonstrates that the effects persist even when the scent has been removed from the servicescape.


Sign in / Sign up

Export Citation Format

Share Document