scholarly journals Selection and analysis of a mutant Paramecium tetraurelia lacking behavioural response to tetraethylammonium

1976 ◽  
Vol 27 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Sheng-Yung Chang ◽  
Ching Kung

SUMMARYWe selected a mutant Paramecium tetraurelia which does not exhibit avoiding reaction in solutions of tetraethylammonium (TEA+), a known membrane K+-channel blocker. Behavioural reaction of the mutant to Na+ solutions was also weak. The rapid successions of avoiding reactions in Ba2+ solutions were observed in both wild type and the TEA-insensitive mutant. Formal genetic analyses showed that this mutant is due to a recessive mutation. This mutation is on a gene completely unlinked to and hypostatic in different degrees to the genes for the membrane defects of ‘pawn A’, ‘pawn B’, ‘ts-pawn C’, ‘fast-2’ and ‘paranoiac A’.

1976 ◽  
Vol 27 (2) ◽  
pp. 109-122 ◽  
Author(s):  
Françoise Ruiz ◽  
André Adoutte ◽  
Michèle Rossignol ◽  
Janine Beisson

SUMMARYMutation tam38 of Paramecium tetraurelia is a nuclear recessive mutation with a pleiotropic effect on both trichocyst morphogenesis and nuclear processes. The analysis of the defective nuclear processes (micronuclear and macronuclear divisions, nuclear reorganization at autogamy) shows that these defects result from an abnormal localization of the nuclei. Phenocopies of tam38 abnormalities can be obtained by vinblastine treatment of wild-type cells at late stages of division. Taking into account the similarity between tam38 and a series of other mutations which also prevent trichocyst attachment to the cell surface and disturb nuclear divisions, the following interpretation is proposed: the absence of attached trichocyst induces structural changes in the plasma membrane or in the cortical region which disturb the normal cortical control of the localization of nuclei.


Genetics ◽  
1989 ◽  
Vol 123 (4) ◽  
pp. 749-754 ◽  
Author(s):  
Y Takagi ◽  
K Izumi ◽  
H Kinoshita ◽  
T Yamada ◽  
K Kaji ◽  
...  

Abstract We have isolated a Paramecium tetraurelia mutant that divides slowly in daily reisolation cultures and repeats short clonal life spans after successive autogamies. Here we show, using breeding analysis, that a recessive mutation is responsible for the low fission rate and that this low rate is closely related to the short clonal life span. We conclude that a single pleiotropic gene controls these traits and have named it jumyo. In an attempt to further characterize the jumyo mutant, we have revealed that it has a culture life span similar to that of the wild-type cells and that, when mass cultured, it can divide as rapidly as wild-type cells. There was strong evidence that the mutant cells excreted into culture medium some substance that promotes their cell division. These findings may not only present supporting evidence for the hypothesis that the cellular life span is genetically programmed but also give a material basis for the study of the controlling mechanism of cell division in relation to the clonal life span.


Genetics ◽  
1977 ◽  
Vol 86 (1) ◽  
pp. 113-120
Author(s):  
Judith Van Houten ◽  
Sheng-Yung Chang ◽  
Ching Kung

ABSTRACT Six mutants of Paramecium tetraurelia with curious "Paranoiac" phenotypes have been isolated and examined. Instead of the normal transient avoiding reactions in Na+ solutions, these mutants show "violent avoidances"—backing continuously for 10 to over 60 sec. This behavior corresponds to prolonged membrane excitation.—Genetic analyses establish five genic loci at which mutations give the "Paranoiac" phenotype. Close linkage between two of these genes occurs. Allelic variants are found for two of the genes. In one case, the two alleles determine very different behavioral phenotypes ("Paranoiac" and "fast-2"). These results show that the mechanism(s) which shuts off excitation in the wild-type membrane is (are) complex, but in the future may be fruitfully pursued in mutants which are defective.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 505-514 ◽  
Author(s):  
J A All-Robyn ◽  
D Kelley-Geraghty ◽  
E Griffin ◽  
N Brown ◽  
S W Liebman

Abstract Omnipotent suppressors decrease translational fidelity and cause misreading of nonsense codons. In the presence of the non-Mendelian factor [eta+], some alleles of previously isolated omnipotent suppressors are lethal. Thus the current search was conducted in an [eta+] strain in an effort to identify new suppressor loci. A new omnipotent suppressor, SUP39, and alleles of sup35, sup45, SUP44 and SUP46 were identified. Efficiencies of the dominant suppressors were dramatically reduced in strains that were cured of non-Mendelian factors by growth on guanidine hydrochloride. Wild-type alleles of SUP44 and SUP46 were cloned and these clones were used to facilitate the genetic analyses. SUP44 was shown to be on chromosome VII linked to cyh2, and SUP46 was clearly identified as distinct from the linked sup45.


Genetics ◽  
2000 ◽  
Vol 155 (3) ◽  
pp. 1105-1117 ◽  
Author(s):  
W John Haynes ◽  
Kit-Yin Ling ◽  
Robin R Preston ◽  
Yoshiro Saimi ◽  
Ching Kung

Abstract Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca2+ current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca2+ current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5′ neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed.


2005 ◽  
Vol 32 (7) ◽  
pp. 643 ◽  
Author(s):  
Xinli Li ◽  
Tamás Borsics ◽  
H. Michael Harrington ◽  
David A. Christopher

We have isolated and characterised AtCNGC10, one of the 20 members of the family of cyclic nucleotide (CN)-gated and calmodulin (CaM)-regulated channels (CNGCs) from Arabidopsis thaliana (L.) Heynh. AtCNGC10 bound CaM in a C-terminal subregion that contains a basic amphiphillic structure characteristic of CaM-binding proteins and that also overlaps with the predicted CN-binding domain. AtCNGC10 is insensitive to the broad-range K+ channel blocker, tetraethylammonium, and lacks a typical K+-signature motif. However, AtCNGC10 complemented K+ channel uptake mutants of Escherichia coli (LB650), yeast (Saccharomyces cerevisiae CY162) and Arabidopsis (akt1-1). Sense 35S-AtCNGC10 transformed into the Arabidopsis akt1-1 mutant, grew 1.7-fold better on K+-limited medium relative to the vector control. Coexpression of CaM and AtCNGC10 in E. coli showed that Ca2+ / CaM inhibited cell growth by 40%, while cGMP reversed the inhibition by Ca2+ / CaM, in a AtCNGC10-dependent manner. AtCNGC10 did not confer tolerance to Cs+ in E. coli, however, it confers tolerance to toxic levels of Na+ and Cs+ in the yeast K+ uptake mutant grown on low K+ medium. Antisense AtCNGC10 plants had 50% less potassium than wild type Columbia. Taken together, the studies from three evolutionarily diverse species demonstrated a role for the CaM-binding channel, AtCNGC10, in mediating the uptake of K+ in plants.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 871-880
Author(s):  
Robin R Preston ◽  
Jocelyn A Hammond

Three mutant strains of Paramecium tetraurelia with an enhanced sensitivity to magnesium have been isolated. These new “Chameleon” mutants result from partial- or codominant mutations at a single locus, Cha. Whereas the wild type responded to 5 mm Mg2+ by swimming backward for 10–15 sec, Cha mutants responded with ∼30 sec backward swimming. Electrophysiological analysis suggested that this behavior may be caused by slowing in the rate at which a Mg2+-specific ion conductance deactivates following membrane excitation. This would be consistent with an observed increase in the sensitivity of Cha mutants to nickel poisoning, since Ni2+ is also able to enter the cell via this pathway. More extensive behavioral analysis showed that Cha cells also overresponded to Na+, but there was no evidence for a defect in intracellular Ca2+ homeostasis that might account for a simultaneous enhancement of both the Mg2+ and Na+ conductances. The possibility that the Cha locus may encode a specific regulator of the Mg2+- and Na+-permeabilities is considered.


Genetics ◽  
1983 ◽  
Vol 103 (2) ◽  
pp. 153-160
Author(s):  
Donald L Cronkite

ABSTRACT Two unlinked recessive mutations (ks-1 and ks-2) have been induced in Paramecium tetraurelia stock 51. Wild-type survives and grows when up to 30 mm KCl is added to the medium, but the mutants cease to grow and die when added KCl reaches 20-25 m m. These K+-sensitives have been crossed to stocks containing the K+-resistant genes, fA (very resistant) and kA(moderately resistant). All four genes are unlinked. Double mutants of ks-1 and either kA or fA are as resistant as the resistant member of the pair. Doubles of ks-2 and kA are like wild type, and doubles of ks-2 and fA are shifted from high resistance toward wild type. Gene ks-2 acts like a suppressor of kA and fA. This suppression can be understood in terms of the known biochemical defects of the mutants.


Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 319-335 ◽  
Author(s):  
M. Jerka-Dziadosz ◽  
N. Garreau de Loubresse ◽  
J. Beisson

kin241 is a monogenic nuclear recessive mutation producing highly pleiotropic effects on cell size and shape, generation time, thermosensitivity, nuclear reorganization and cortical organization. We have analyzed the nature of the cortical disorders and their development during division, using various specific antibodies labelling either one of the cortical cytoskeleton components, as was previously done for analysis of cortical pattern formation in the wild type. Several abnormalities in basal body properties were consistently observed, although with a variable frequency: extra microtubules in either the triplets or in the lumen; nucleation of a second kinetodesmal fiber; abnormal orientation of the newly formed basal body with respect to the mother one. The latter effect seems to account for the major observed cortical disorders (reversal, intercalation of supplementary ciliary rows). The second major effect of the mutation concerns the spatiotemporal map of cortical reorganization during division. Excess basal body proliferation occurs and is correlated with modified boundaries of some of the cortical domains identified in the wild type on the basis of their basal body duplication pattern. This is the first mutant described in a ciliate in which both the structure and duplication of basal bodies and the body plan are affected. The data support the conclusion that the mutation does not alter the nature of the morphogenetic signal(s) which pervade the dividing cell, nor the competence of cytoskeletal structures to respond to signalling, but affects the local interpretation of the signals.


Genetics ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 309-325
Author(s):  
D Busson ◽  
M Gans ◽  
K Komitopoulou ◽  
M Masson

ABSTRACT Three dominant female-sterile mutations were isolated following ethyl methanesulfonate (EMS) mutagenesis. Females heterozygous for two of these mutations show atrophy of the ovaries and produce no eggs (ovoD  1) or few eggs (ovoD  2); females heterozygous for the third mutation, ovoD  3, lay flaccid eggs. All three mutations are germ line-dependent and map to the cytological region 4D-E on the X chromosome; they represent a single allelic series. Two doses of the wild-type allele restore fertility to females carrying ovoD  3 and ovoD  2, but females carrying ovoD  1 and three doses of the wild-type allele remain sterile. The three mutations are stable in males but are capable of reversion in females; reversion of the dominant mutations is accompanied by the appearance, in the same region, of a recessive mutation causing female sterility. We discuss the utility of these mutations as markers of clones induced in the female germ line by mitotic recombination as well as the nature of the mutations.


Sign in / Sign up

Export Citation Format

Share Document