scholarly journals Pervasive near-surface stratal disruption in an accretionary prism setting: Kaczawa Complex, SW Poland

2016 ◽  
Vol 154 (3) ◽  
pp. 651-660 ◽  
Author(s):  
JOANNA KOSTYLEW ◽  
JAN A. ZALASIEWICZ ◽  
RYSZARD KRYZA

AbstractThe tectonized and metamorphosed mudrocks within the Variscan accretionary prism of the Kaczawa Mountains in SW Poland comprise sedimentary mélanges together with more coherent stratigraphic units; some represent large olistoliths deposited in a submarine trench. We infer a trend of progressive near-surface stratal disruption in mud-dominated deposits due to dewatering that forms a continuum with subduction-related tectonic structures imposed on unconsolidated sediment during deeper burial. The assemblage of characters suggests that an accretionary prism environment can influence, and leave characteristic traces of, the total burial history of a trench succession.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Y. J. Cui ◽  
Y. Li ◽  
X. Y. Si ◽  
L. X. Yang ◽  
Z. F. Liu ◽  
...  

Tectonic controls on near-surface CH4 and CO2 concentrations were investigated by measuring CH4 and CO2 concentrations at the surface and a height of 1.5 m, in the different tectonic units that comprise the northwestern margin of Ordos Block, China, which has a complex tectonic structure and a history of strong earthquakes. CH4 and CO2 concentrations varied from 1905 to 2472 ppb and 397.5 to 458.5 ppm, respectively. Surface CH4 and CO2 concentrations were generally higher than those measured at 1.5 m, but showed similar trends, indicating that the measured CH4 and CO2 predominantly originated from underground gases. The CH4 and CO2 concentrations increased with an increasing strike-slip rate across the faults, and concentrations in the blocks with high internal deformation were much higher than those measured in the stable blocks. Regions of extensional deformation had higher gas concentrations than regions that had experienced compressional deformation. The spatial distribution of CH4 and CO2 at the study site had similar trends to faults associated with the Yinchuan Graben. The results of this study indicated that gas source, gas migration pathway, and tectonic stress were the main factors that influenced gas emission. The key factor is tectonic stress, which controlled the formation of tectonic structures, changed the pathway of degassing, and acted as the driving force for gas migration. The results of this study clarify the mechanism of CH4 and CO2 degassing in faulted regions and suggest that CH4 and CO2 concentrations may be useful precursors in the monitoring of seismic activity. The results may also help inform future assessments of the contribution of geological sources to greenhouse gas emissions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Alexis P. Rodriguez ◽  
Kenneth L. Tanaka ◽  
Ali M. Bramson ◽  
Gregory J. Leonard ◽  
Victor R. Baker ◽  
...  

AbstractThe clockwise spiral of troughs marking the Martian north polar plateau forms one of the planet’s youngest megastructures. One popular hypothesis posits that the spiral pattern resulted as troughs underwent poleward migration. Here, we show that the troughs are extensively segmented into enclosed depressions (or cells). Many cell interiors display concentric layers that connect pole- and equator-facing slopes, demonstrating in-situ trough erosion. The segmentation patterns indicate a history of gradual trough growth transversely to katabatic wind directions, whereby increases in trough intersections generated their spiral arrangement. The erosional event recorded in the truncated strata and trough segmentation may have supplied up to ~25% of the volume of the mid-latitude icy mantles. Topographically subtle undulations transition into troughs and have distributions that mimic and extend the troughs’ spiraling pattern, indicating that they probably represent buried trough sections. The retention of the spiral pattern in surface and subsurface troughs is consistent with the megastructure’s stabilization before its partial burial. A previously suggested warm paleoclimatic spike indicates that the erosion could have occurred as recently as ~50 Ka. Hence, if the removed ice was redeposited to form the mid-latitude mantles, they could provide a valuable source of near-surface, clean ice for future human exploration.


2018 ◽  
Vol 36 (5) ◽  
pp. 1229-1244
Author(s):  
Xiao-Rong Qu ◽  
Yan-Ming Zhu ◽  
Wu Li ◽  
Xin Tang ◽  
Han Zhang

The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY% Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.


2019 ◽  
pp. 3-11
Author(s):  
E. A. Rogozhin ◽  
A. V. Gorbatikov ◽  
Yu. V. Kharazova ◽  
M. Yu. Stepanova ◽  
J. Chen ◽  
...  

In the period from 2007 to 2017 complex geological and geophysical studies were carried out in the three largest flexural-rupture fault zones in the North-West Caucasus (Anapa, Akhtyrka and Moldavan). The micro-seismic sounding (MSM) was used as the main geophysical method. Studies with the help of MSM allowed us to identify the features of the deep structure of the earth’s crust in the study area and to associate them with specific tectonic structures on the surface.The binding was carried out by harmonizing the results of the MSM and the parameters of the section of the sedimentary cover and crustal boundaries according to the drilling data and the work previously performed by the reflected wave method (MOVZ). It was found that the Anapa flexure and longitudinal tectonic zones have clear deep roots, and also separate the pericline of the North-Western Caucasus from the Taman Peninsula and from the lowered blocks of the Northern slope of the folded system.Faults in the study area are divided into: (1) deep faults of the Caucasian stretch, penetrating into the lower crust and even to the upper mantle, and (2) near-surface faults, do not extend to the depths beyond the thickness of the sedimentary cover. The seismogenic role of these tectonic disturbances in the studied seismically active region has been determined.


1990 ◽  
Vol 27 (6) ◽  
pp. 731-741 ◽  
Author(s):  
Rudolf Bertrand

Carbonate platform sequences of Anticosti Island and the Mingan Archipelago are Early Ordovician to Early Silurian in age. With the exception of the Macasty Formation, the sequences are impoverished in dispersed organic matter, which is chiefly composed of zooclasts. Zooclast reflectances suggest that the Upper Ordovician and Silurian sequences outcropping on Anticosti Island are entirely in the oil window but that the Lower to Middle Ordovician beds of the Mingan Archipelago and their stratigraphic equivalents in the subsurface of most of Anticosti Island belong to the condensate zone. Only the deeper sequences of the southwestern sector of Anticosti Island are in the diagenetic dry-gas zone. The maximum depth of burial of sequences below now-eroded Silurian to Devonian strata increases from 2.3 km on southwestern Anticosti Island to 4.5 km in the Mingan Archipelago. A late upwarp of the Precambrian basement likely allowed deeper erosion of the Paleozoic strata in the vicinity of the Mingan Archipelago than on Anticosti Island. Differential erosion resulted in a southwestern tilting of equal maturation surfaces. The Macasty Formation, the only source rock of the basin (total organic carbon generally > 3.5%, shows a wide range of thermal maturation levels (potential oil window to diagenetic dry gas). It can be inferred from the burial history of Anticosti Island sequences that oil generation began later but continued for a longer period of geologic time in the northeastern part than in the southeastern part of the island. Oil generation was entirely pre-Acadian in the southern and western parts of Anticosti Island, but pre- and post-Acadian in the northern and eastern parts.


The Luna 24 mission sampled a variety of lithologies in a single core. Two of these lithologies, a metabasalt (24196) and a crushed basalt (24170) have been subjected to 40 Ar- 39 Ar dating experiments to determine if metamorphism significantly post-dated basalt extrusion. The metabasalt exhibited symptoms of both solar wind contamination and 39 Ar recoil; in view of these effects an age may only be defined by making extreme assumptions. High temperature release fractions give an age of 3.36 ± 0.11 Ga, while the cumulate 40 Ar/ 39 Ar ratio gives 3.14 ± 0.16 Ga; both are comparable with the basalt (24170) age and suggest that the metabasalts represent thermally penecontemporaneously metamorphosed flow margins, rather than the products of later impact events. The feldspar from the microgabbro yielded an age of 3.37 ± 0.20 Ga. The ratios of cosmogenic 38 Ar to Ca in pyroxene and feldspar are within error identical, indicating that 38 Ar production from Fe in the pyroxene is small. This is the first definitive use of Fe-produced 38 Ar as a spectral hardness indicator and implies that the microgabbro received much of its cosmic ray exposure at depth in the regolith. By taking account of the dependence of 38 Ar production rate with depth it is inferred that the microgabbro layer was deposited within the last 350-500 Ma. By implication, the regolith layers above the microgabbro at the Luna 24 site are younger. The metabasalt has an identical cosmogenic 38 Ar/Ca ratio; however, because of the decrease of production rate with depth it could have experienced a 20 % pre-exposure before deposition of the microgabbro. Spectral information has also been obtained from a reappraisal of published argon data and indicates a much harder spectrum for a near surface sample. The way in which the Ca- and Fe-produced 38 Ar e follow the broad trend of the instantaneous production profiles suggests that the regolith at the Luna 24 site has been relatively undisturbed for much of the last 300 Ma.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. B287-B294 ◽  
Author(s):  
Jamie K. Pringle ◽  
Peter Styles ◽  
Claire P. Howell ◽  
Michael W. Branston ◽  
Rebecca Furner ◽  
...  

The area around the town of Northwich in Cheshire, U. K., has a long history of catastrophic ground subsidence caused by a combination of natural dissolution and collapsing abandoned mine workings within the underlying Triassic halite bedrock geology. In the village of Marston, the Trent and Mersey Canal crosses several abandoned salt mine workings and previously subsiding areas, the canal being breached by a catastrophic subsidence event in 1953. This canal section is the focus of a long-term monitoring study by conventional geotechnical topographic and microgravity surveys. Results of 20 years of topographic time-lapse surveys indicate specific areas of local subsidence that could not be predicted by available site and mine abandonment plan and shaft data. Subsidence has subsequently necessitated four phases of temporary canal bank remediation. Ten years of microgravity time-lapse data have recorded major deepening negative anomalies in specific sections that correlate with topographic data. Gravity 2D modeling using available site data found upwardly propagating voids, and associated collapse material produced a good match with observed microgravity data. Intrusive investigations have confirmed a void at the major anomaly. The advantages of undertaking such long-term studies for near-surface geophysicists, geotechnical engineers, and researchers working in other application areas are discussed.


Author(s):  
P.J. Lee

A basin or subsurface study, which is the first step in petroleum resource evaluation, requires the following types of data: • Reservoir data—pool area, net pay, porosity, water saturation, oil or gas formation volume factor, in-place volume, recoverable oil volume or marketable gas volume, temperature, pressure, density, recovery factors, gas composition, discovery date, and other parameters (refer to Lee et al., 1999, Section 3.1.2). • Well data—surface and bottom well locations; spud and completion dates; well elevation; history of status; formation drill and true depths; lithology; drill stem tests; core, gas, and fluid analyses; and mechanical logs. • Geochemical data—types of source rocks, burial history, and maturation history. • Geophysical data—prospect maps and seismic sections. Well data are essential when we construct structural contour, isopach, lithofacies, porosity, and other types of maps. Geophysical data assist us when we compile number-of-prospect distributions and they provide information for risk analysis.


Sign in / Sign up

Export Citation Format

Share Document