scholarly journals First geochemical and geochronological characterization of Late Cretaceous mesosilicic magmatism in Gastre, Northern Patagonia, and its tectonic relation to other coeval volcanic rocks in the region

2018 ◽  
Vol 156 (07) ◽  
pp. 1285-1294 ◽  
Author(s):  
CLAUDIA ZAFFARANA ◽  
SILVIA LAGORIO ◽  
DARÍO ORTS ◽  
ALICIA BUSTEROS ◽  
DIEGO SILVA NIETO ◽  
...  

AbstractThis work characterizes Late Cretaceous calc-alkaline volcanic rocks in Gastre, Northern Patagonia, Argentina. These newly found porphyritic rocks bear an 40Ar–39Ar amphibole age of ~ 74–76 Ma, a subduction-type geochemical signature and a deep, garnet-bearing source. Extruded in a stage of low magmatic activity in the Northern Patagonian Andes (~ 41–44° S), they could represent an eastward migration of the Late Cretaceous magmatic arc that was associated with a regional compressive deformational stage in the South American margin.

2009 ◽  
Vol 147 (2) ◽  
pp. 193-205 ◽  
Author(s):  
MANUEL SUÁREZ ◽  
RITA DE LA CRUZ ◽  
MICHAEL BELL ◽  
ALAIN DEMANT

AbstractThe Mesozoic Austral Basin of Patagonia, in southwestern Gondwana, experienced a major tectonic segmentation during Aptian times. Sometime between 121 and 118 Ma (Aptian), the northern part of the Austral Basin, known as the Aisén Basin or Río Mayo Embayment, was inverted, with the sediments overlain by calc-alkaline subaerial volcanic rocks of Aptian to Maastrichtian age. In the southern segment of the Austral Basin, known as the Magallanes Basin, predominantly marine sediments accumulated until Cenozoic times in a back-arc position, relative to a magmatic arc located to the west. The subduction-related N–S-trending volcanic chains of both segments were geographically displaced during Aptian to Late Cretaceous times. In the Aisén segment north of ~49–50° S, the volcanic chain was located further east than the coeval arc in the Magallanes segment. A transform fault connected the trenches of both segments, with the Aisén segment dipping at a shallower angle than the Magallanes segment.


2019 ◽  
Vol 55 (1) ◽  
pp. 202
Author(s):  
Foteini Aravani ◽  
Lambrini Papadopoulou ◽  
Vasileios Melfos ◽  
Triantafillos Soldatos ◽  
Triantafillia Zorba ◽  
...  

The volcanic rocks of Kornofolia area, Evros, host a number of epithermal-type veins. The host rocks are Oligocene calc-alkaline andesites to rhyo-dacites. The andesites form hydrothermal breccias and show hydrothermal alteration. The veins comprise mainly silica polymorphs such as quartz, chalcedony and three types of opal (milky white, transparent and green). Amethyst also forms in veins at the same area. Apart from the silica polymorphs, the veins are accompanied by calcite and zeolites. The main aim of this study is the characterization of the silica polymorphs. Using FT-IR analyses, variations in the crystal structure of the three opals were recognized. The green opal is found to be more amorphous than the other two types. Fluid-inclusion measurements were performed in calcite and were compared with amethyst from previous studies. The Th is between 121-175 °C and the Te between -22.9 and -22.4 °C. The salinities range from 0.9 to 4.5 wt % NaCl equiv.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


2014 ◽  
Vol 281 (1792) ◽  
pp. 20140811 ◽  
Author(s):  
Sebastián Apesteguía ◽  
Raúl O. Gómez ◽  
Guillermo W. Rougier

Rhynchocephalian lepidosaurs, though once widespread worldwide, are represented today only by the tuatara ( Sphenodon ) of New Zealand. After their apparent early Cretaceous extinction in Laurasia, they survived in southern continents. In South America, they are represented by different lineages of Late Cretaceous eupropalinal forms until their disappearance by the Cretaceous/Palaeogene (K/Pg) boundary. We describe here the only unambiguous Palaeogene rhynchocephalian from South America; this new taxon is a younger species of the otherwise Late Cretaceous genus Kawasphenodon . Phylogenetic analysis confirms the allocation of the genus to the clade Opisthodontia. The new form from the Palaeogene of Central Patagonia is much smaller than Kawasphenodon expectatus from the Late Cretaceous of Northern Patagonia. The new species shows that at least one group of rhynchocephalians not related to the extant Sphenodon survived in South America beyond the K/Pg extinction event. Furthermore, it adds to other trans-K/Pg ectotherm tetrapod taxa, suggesting that the end-Cretaceous extinction affected Patagonia more benignly than the Laurasian landmasses.


Author(s):  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Fernando Flecha de Alkmim ◽  
Luiz Carlos da Silva ◽  
Marly Babinski ◽  
...  

The Araçuaí Fold Belt was defined as the southeastern limit of the São Francisco Craton in the classicalpaper published by Fernando Flávio Marques de Almeida in 1977. This keystone of the Brazilian geologicliterature catalyzed important discoveries, such as of Neoproterozoic ophiolites and a calc-alkaline magmaticarc, related to the Araçuaí Belt and paleotectonic correlations with its counterpart located in Africa (the WestCongo Belt), that provided solid basis to define the Araçuaí-West-Congo Orogen by the end of the 1990thdecade. After the opening of the Atlantic Ocean in Cretaceous times, two thirds of the Araçuaí-West-CongoOrogen remained in the Brazil side, including records of the continental rift and passive margin phases ofthe precursor basin, all ophiolite slivers and the whole orogenic magmatism formed from the pre-collisionalto post-collisional stages. Thus, the name Araçuaí Orogen has been applied to the Neoproterozoic-Cambrianorogenic region that extends from the southeastern edge of the São Francisco Craton to the Atlantic coastlineand is roughly limited between the 15º and 21º S parallels. After 30 years of systematic geological mappingtogether with geochemical and geochronological studies published by many authors, all evolutionary stagesof the Araçuaí Orogen can be reasonably interpreted. Despite the regional metamorfism and deformation, thefollowing descriptions generally refer to protoliths. All mentioned ages were obtained by U-Pb method onzircon. The Macaúbas Group records rift, passive margin and oceanic environments of the precursor basinof the Araçuaí Orogen. From the base to the top and from proximal to distal units, this group comprises thepre-glacial Duas Barras and Rio Peixe Bravo formations, and the glaciogenic Serra do Catuni, Nova Auroraand Lower Chapada Acauã formations, related to continental rift and transitional stages, and the diamictitefreeUpper Chapada Acauã and Ribeirão da Folha formations, representing passive margin and oceanicenvironments. Dates of detrital zircon grains from Duas Barras sandstones and Serra do Catuni diamictitessuggest a maximum sedimentation age around 900 Ma for the lower Macaúbas Group, in agreement withages yielded by the Pedro Lessa mafic dikes (906 ± 2 Ma) and anorogenic granites of Salto da Divisa (875 ±9 Ma). The thick diamictite-bearing marine successions with sand-rich turbidites, diamictitic iron formation,mafic volcanic rocks and pelites (Nova Aurora and Lower Chapada Acauã formations) were depositedfrom the rift to transitional stages. The Upper Chapada Acauã Formation consists of a sand-pelite shelfsuccession, deposited after ca. 864 Ma ago in the proximal passive margin. The Ribeirão da Folha Formationmainly consists of sand-pelite turbidites, pelagic pelites, sulfide-bearing cherts and banded iron formations,representing distal passive margin to oceanic sedimentation. Gabbro and dolerite with plagiogranite veinsdated at ca. 660 Ma, and ultramafic rocks form tectonic slices of oceanic lithosphere thrust onto packagesof the Ribeirão da Folha Formation. The pre-collisional, calc-alkaline, continental magmatic arc (G1 Suite,630-585 Ma) consists of tonalites and granodiorites, with minor diorite and gabbro. A volcano-sedimentarysuccession of this magmatic arc includes pyroclastic and volcaniclastic rocks of dacitic composition datedat ca. 585 Ma, ascribed to the Palmital do Sul and Tumiritinga formations (Rio Doce Group), depositedfrom intra-arc to fore-arc settings. Detrital zircon geochronology suggests that the São Tomé wackes (RioDoce Group) represent intra-arc to back-arc sedimentation after ca. 594 Ma ago. The Salinas Formation, aconglomerate-wacke-pelite association located to northwest of the magmatic arc, represents synorogenicsedimentation younger than ca. 588 Ma. A huge zone of syn-collisional S-type granites (G2 Suite, 582-560Ma) occurs to the east and north of the pre-collisional magmatic arc, northward of latitude 20º S. Partialmelting of G2 granites originated peraluminous leucogranites (G3 Suite) from the late- to post-collisionalstages. A set of late structures, and the post-collisional intrusions of the S-type G4 Suite (535-500 Ma) andI-type G5 Suite (520-490 Ma) are related to the gravitational collapse of the orogen. The location of themagmatic arc, roughly parallel to the zone with ophiolite slivers, from the 17º30’ S latitude southwardssuggests that oceanic crust only developed along the southern segment of the precursor basin of the Araçuaí-West-Congo Orogen. This basin was carved, like a large gulf partially floored by oceanic crust, into the SãoFrancisco-Congo Paleocontinent, but paleogeographic reconstructions show that the Bahia-Gabon cratonicbridge (located to the north of the Araçuaí Orogen) subsisted since at least 1 Ga until the Atlantic opening.This uncommon geotectonic scenario inspired the concept of confined orogen, quoted as a new type ofcollisional orogen in the international literature, and the appealing nutcracker tectonic model to explain theAraçuaí-West-Congo Orogen evolution. 


2004 ◽  
Vol 141 (5) ◽  
pp. 583-603 ◽  
Author(s):  
OSMAN PARLAK ◽  
VOLKER HÖCK ◽  
HÜSEYİN KOZLU ◽  
MICHEL DELALOYE

A number of Late Cretaceous ophiolitic bodies are located between the metamorphic massifs of the southeast Anatolian orogenic system. One of them, the Göksun ophiolite (northern Kahramanmaraş), which crops out in a tectonic window bounded by the Malatya metamorphic units on both the north and south, is located in the EW-trending nappe zone of the southeast Anatolian orogenic belt between Göksun and Afşin (northern Kahramanmaraş). It consists of ultramafic–mafic cumulates, isotropic gabbro, a sheeted dyke complex, plagiogranite, volcanic rocks and associated volcanosedimentary units. The ophiolitic rocks and the tectonically overlying Malatya–Keban metamorphic units were intruded by syn-collisional granitoids (∼ 85 Ma). The volcanic units are characterized by a wide spectrum of rocks ranging in composition from basalt to rhyolite. The sheeted dykes consist of diabase and microdiorite, whereas the isotropic gabbros consist of gabbro, diorite and quartzdiorite. The magmatic rocks in the Göksun ophiolite are part of a co-magmatic differentiated series of subalkaline tholeiites. Selective enrichment of some LIL elements (Rb, Ba, K, Sr and Th) and depletion of the HFS elements (Nb, Ta, Ti, Zr) relative to N-MORB are the main features of the upper crustal rocks. The presence of negative anomalies for Ta, Nb, Ti, the ratios of selected trace elements (Nb/Th, Th/Yb, Ta/Yb) and normalized REE patterns all are indicative of a subduction-related environment. All the geochemical evidence both from the volcanic rocks and the deeper levels (sheeted dykes and isotropic gabbro) show that the Göksun ophiolite formed during the mature stage of a suprasubduction zone (SSZ) tectonic setting in the southern branch of the Neotethyan ocean between the Malatya–Keban platform to the north and the Arabian platform to the south during Late Cretaceous times. Geological, geochronological and petrological data on the Göksun ophiolite and the Baskil magmatic arc suggest that there were two subduction zones, the first one dipping beneath the Malatya–Keban platform, generating the Baskil magmatic arc and the second one further south within the ocean basin, generating the Göksun ophiolite in a suprasubduction zone environment.


2003 ◽  
Vol 75 (3) ◽  
pp. 331-339 ◽  
Author(s):  
Márcio M. Pimentel ◽  
Maria Helena B. M. Hollanda ◽  
Richard Armstrong

The Arenópolis volcano-sedimentary sequence is located in the southern part of the Goiás Magmatic Arc and includes a ca. 900 Ma calc-alkaline arc sequence made of volcanic rocks ranging in composition from basalts to rhyolites, metamorphosed under greenschist to amphibolite facies. Small calc-alkaline gabbro to granite sub-volcanic bodies are also recognized. The Morro do Baú intrusion is the largest of these intrusions, and is made of gabbros and diorites. Zircon grains separated from one gabbro sample and analyzed by SHRIMP I yielded the mean 206Pb/238U age of 890 +/- 8 Ma, indicating that the intrusion is roughly coeval or only slightly younger than the Arenópolis volcanics. Contrary to the metavolcanics, which are juvenile, the Nd isotopic composition of the Morro do Baú gabbro indicates strong contamination with archean sialic material (T DM of 2.8 Ga and EpsilonNd(T) of -9.7), represented in the area by an allochthonous sliver of archean/paleoproterozoic gneisses (Ribeirão gneiss) which are the country-rocks for the gabbro/dioritic intrusion. The emplacement age of ca. 890 Ma represents a minimum age limit for the tectonic accretion of the gneiss sliver to the younger rocks of the Arenópolis sequence. The data suggest that this happened early in the evolution of the Goiás Magmatic Arc, between ca. 920 and 890 Ma.


1997 ◽  
Vol 9 (2) ◽  
pp. 209-220 ◽  
Author(s):  
Joe J. McCarron

Late Cretaceous–early Tertiary subduction-related fore-arc volcanic rocks are exposed in a north–south linear belt along the length of Alexander Island. The age and tectonic setting of these rocks is well understood; they are not considered to represent “normal” arc magmas but were generated in the fore-arc as a result of ridge subduction. Due to their distinct composition and mode of formation, they are no longer considered to be genetically related to the Antarctic Peninsula magmatic arc. They are therefore removed from the Antarctic Peninsula Volcanic Group and placed in a newly defined Alexander Island Volcanic Group. The group is made up of the Monteverdi, Staccato, Walton, Colbert, Elgar and Finlandia formations, which vary widely in lithology, facies and age. The Colbert and Elgar formations are subdivided into nine and three members respectively. Type localities, representative lithologies and age of each of the formations are discussed. The Staccato and Colbert Magmatic complexes are defined to include volcanic and plutonic rocks that are considered to be coeval. The Rouen Intrusive complex combines the plutonic rocks from the Rouen Mountains and Rothschild Island on the basis of age and chemistry.


1996 ◽  
Vol 8 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Francisco Hervé ◽  
Jorge Lobato ◽  
Ignacio Ugalde ◽  
Robert J. Pankhurst

Cape Dubouzet is mainly composed of a volcanic-subvolcanic complex of extrusive rhyolitic breccias, a banded rhyolite and a semi-annular body of dacite porphyry rich in xenoliths of metamorphic rocks. Major and REE geochemistry indicate that the volcanic rocks are calc-alkaline and that they are genetically related by fractional crystallization of a plagioclase-bearing assemblage from a common magma. Rb-Sr data suggest that the rhyolitic complex is of Middle-to-Late Jurassic age, and that it is intruded by Late Cretaceous stocks of banded diorite and gabbro. All these rocks are partially covered by moraines whose clasts are of local provenance. Xenoliths in the dacite porphyry suggest that the northern tip of the Antarctic Peninsula is underlain by a metamorphic complex composed of amphibolites, meta-tonalites and pelitic gneiss containing garnet, sillimanite, cordierite, hercynite, and andalucite. Such rocks are not known in the Scotia metamorphic complex, nor in the Trinity Peninsula Group and its low grade metamorphic derivatives, which also occur as rare xenoliths in the dacite. Previous dating of xenoliths collected from the moraines suggested a late Carboniferous age for this amphibolite-grade metamorphism. Both the Jurassic-Cenozoic magmatic arc of the Antarctic Peninsula and the accretionary complex rocks of the Trinity Peninsula Group were thus developed, at least in part, over pre-existing continental crust.


Sign in / Sign up

Export Citation Format

Share Document