U–Pb ages and Hf isotopes of detrital zircons from pre-Devonian sequences along the southeast Yangtze: a link to the final assembly of East Gondwana

2018 ◽  
Vol 156 (06) ◽  
pp. 950-968 ◽  
Author(s):  
XIAO MA ◽  
KUNGUANG YANG ◽  
ALI POLAT

AbstractThe Early Palaeozoic geology of the South China Craton (SCC) is characterized by an Early Palaeozoic intracontinental orogen with folded pre-Devonian strata and migmatites, MP/MT metamorphic rocks and Silurian post-orogenic peraluminous magmatic rocks in both the Yangtze and the Cathaysia blocks. In this contribution, we present new zircon U–Pb ages and Hf isotope data for detrital zircons from the Neoproterozoic to Silurian sedimentary sequences in the southeastern Yangtze Block. Samples from Neoproterozoic rocks generally display a major peak at 900–560 Ma, whereas samples from Lower Palaeozoic rocks are characterized by several broader peaks within the age ranges 600–410 Ma, 1100–780 Ma, 1.6–1.2 Ga and 2.8–2.5 Ga. Provenance analysis indicates that the 900–630 Ma detritus in Cryogenian to Ediacaran samples was derived from the Late Neoproterozoic igneous rocks in South China that acted as an internal source. The occurrence of 620–560 Ma detritus indicates the SE Yangtze was associated with Late Neoproterozoic arc volcanism along the north margin of East Gondwana. The change of provenance resulted in the deposition of 550–520 Ma and 1.1–0.9 Ga detrital zircons in the Cambrian–Ordovician sedimentary rocks. The εHf(t) values of these detrital zircons are similar to those of zircons from NW Australia–Antarctica and South India. This change of provenance in the Cambrian can be attributed to the intracontinental subduction between South China and South Qiangtang, and the convergence of India and Australia when East Gondwana finally amalgamated.

2020 ◽  
pp. 1-16
Author(s):  
Jian-Hui Liu ◽  
Fu-Lai Liu ◽  
Zheng-Jiang Ding ◽  
Hong Yang ◽  
Ping-Hua Liu ◽  
...  

Abstract The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of > 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (> 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.


Author(s):  
Chen Wu ◽  
Jie Li ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Xuanhua Chen ◽  
...  

The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.


Author(s):  
Guangyou Zhu ◽  
Huichuan Liu ◽  
Tingting Zhang ◽  
Weiyan Chen ◽  
Jianwei Xiao ◽  
...  

Contrasting models for internal versus external locations of the South China Craton (SCC) in the supercontinent Rodinia and associated mantle plume or ocean subduction dominated tectonic processes can be resolved by detrital zircon U-Pb dating and Lu-Hf isotopic analyses on the Cryogenian Nanhua Supergroup in the central SCC. Our results show that samples from the lower Liantuo, Tiesi’ao, and Datangpo formations of the Nanhua Supergroup show three age peaks at 2.50 Ga, 2.05 Ga, and 0.85 Ga, and those of the upper Nantuo Formation yield four peaks at 2.50 Ga, 2.05 Ga, 0.85 Ga, and 0.65 Ga. The Archean and Paleoproterozoic (1.80−2.10 Ga) zircons have εHf(t) values of −16.3 to +4.7 and −23.0 to +4.2, and may be sourced from the Kongling and Douling complexes and Paleoproterozoic intrusions in the northern Yangtze Block, respectively. Early Neoproterozoic (0.70−0.96 Ga) zircon grains show variable εHf(t) values of −20.0 to +15.0. In combination with the absence of Mesoproterozoic detrital zircons in the Nanhua Supergroup, huge volumes of Neoproterozoic granitic intrusions in the northern Yangtze Block are the potential sources for the 0.70−0.96 Ga detrital zircons. Only the siltstone of the Nantuo Formation has late Neoproterozoic (0.63−0.69 Ga) detrital zircons with high and positive εHf(t) values (+7.9 to +9.4). Several granitoid intrusions (0.63−0.68 Ga) in the Wudang and Ankang uplift of the South Qinling belt in the northern Yangtze Block provide the late Neoproterozoic detrital zircons of the Nantuo Formation. These provenance analyses of the Nanhua Supergroup indicate an interior source from the SCC, rather than an exterior source from the Laurentia and Australia cratons. The Neoproterozoic rift basins and magmatic rocks in the SCC were produced by secular episodic subductions and back-arc extensions, rather than a Neoproterozoic super-mantle plume. The SCC occupied a peripheral position adjacent to northern India in Rodinia during the Neoproterozoic. These conclusions will promote our understanding of genetic mechanism and distribution prediction of the several Cryogenian−Cambrian black-shale layers and excellent source rocks in the SCC.


2010 ◽  
Vol 147 (6) ◽  
pp. 974-980 ◽  
Author(s):  
LONG WU ◽  
DONG JIA ◽  
HAIBIN LI ◽  
FEI DENG ◽  
YIQUAN LI

AbstractThe U–Pb geochronology of 687 detrital zircons from the voluminous Upper Neoproterozoic–Ordovician succession in the Wuyishan Fold Belt of South China reveals a common dominant c. 1200–950 Ma group, indicative of an outboard provenance terrane with a Grenville-age province to the southeast during the late Neoproterozoic–Early Palaeozoic. Compared with coeval samples from the Gondwanan and eastern Laurentian margins, our data show a scarcity of distinctive Gondwanan provenances (c. 650–500 Ma) and reveal some Laurentian signatures. These results argue against the peri-Gondwanan setting for South China during the late Neoproterozoic–Ordovician, instead implying a Laurentian affinity.


Author(s):  
Qiong Chen ◽  
Guochun Zhao ◽  
Min Sun

Neoproterozoic to Paleozoic sedimentation shows systematic temporal-spatial variations within South China, which must be considered in reconstructing geological evolution of South China in response to global plate reorganization from the breakup of Rodinia to the assembly of Gondwana. We use >1000 new U-Pb and Hf isotopic data for detrital zircons from Neoproterozoic−Cambrian strata across the western (i.e., Longmenshan) and eastern (i.e., Wuyishan) margins of South China, coupled with compiled stratigraphic and magmatic information, to constrain change in provenance through time. First-order conclusions are as follows: (1) detrital zircons from the Neoproterozoic strata of the two margins were mainly sourced from the Panxi-Hannan arc and the Jiangnan orogen, signaling a rough self-sufficient sedimentary system; (2) newly identified Cambrian molasse-like sediments in the western margin, in which abundant detrital zircons are 550−500 Ma old with positive εHf(t) values, were mainly derived from the 580−500 Ma Cadomian arc belt along the Iran-Turkey margin; and (3) the Cambrian sediments in the eastern margin document more increased contributions from the Grenvillian-age provinces most possibly in Australia. Such spatial-temporal provenance variations signal the northward drifting of South China, from a position connecting with Iran-Turkey and northern India to that approaching Australia during the late Neoproterozoic−Cambrian period. We highlight that the activity of oblique oceanic-continental convergence accreted Asian terranes onto the northern margin of Gondwana, hence contributing to the ultimate Gondwana architecture under global plate reorganization.


2021 ◽  
Author(s):  
Qian Wang ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Jinlong Yao

<p>The Chinese North Tianshan (CNTS) extends E-W along the southern part of the Central Asian Orogenic Belt and has undergone complicated accretion-collision processes in the Paleozoic. This study attempts to clarify the late Paleozoic tectonism in the region by investigating the provenance of the Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS by U-Pb dating and Lu-Hf isotopic analyses of detrital zircons. Detrital zircon U-Pb ages (N=519) from seven samples range from 261 ± 4 Ma to 2827 ± 32 Ma, with the most prominent age peak at 313 Ma. There are Precambrian detrital zircon ages (~7%) ranged from 694 to 1024 Ma. The youngest age components in each sample yielded weighted mean ages ranging from 272 ± 9 Ma to 288 ± 5 Ma, representing the maximum depositional ages. These and literature data indicate that some previously-assumed “Carboniferous” strata in the Bogda area were deposited in the Early Permian, including the Qijiaojing, Julideneng, Shaleisaierke, Yangbulake, Shamaershayi, Liushugou, Qijiagou, and Aoertu formations. The low maturity of the sandstones, zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East ­Junggar Arc and the Harlik-Dananhu Arc in the CNTS. The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc. Zircon ɛ<sub>Hf</sub>(t) values have increased since ~408 Ma, probably reflecting a tectonic transition from regional compression to extension. This event might correspond to the opening of the Bogda intra-arc/back arc rift basin, possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean. A decrease of zircon ɛ<sub>Hf</sub>(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision, which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. This research was financially supported by the Youth Program of Shaanxi Natural Science Foundation (2020JQ-589), the NSFC Projects (41730213, 42072264, 41902229, 41972237) and Hong Kong RGC GRF (17307918).</p>


2018 ◽  
Vol 45 (3) ◽  
pp. 301 ◽  
Author(s):  
Francisco Hervé ◽  
Mauricio Calderón ◽  
Mark Fanning ◽  
Robert Pankhurst ◽  
Carlos W. Rapela ◽  
...  

Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.


2018 ◽  
Vol 10 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Xianghong Meng ◽  
Yu Zhang ◽  
Duoyun Wang ◽  
Xue Zhang

AbstractLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating has been performed on detrital zircons from the Chunshuyao Formation sandstone of Yichuan Basin. The ages of 85 detrital zircon grains are divided into three groups: 252-290 Ma, 1740-2000 Ma, and 2400-2600 Ma. The lack of Early Paleozoic and Neoproterozoic U-Pb ages indicates that there is no input from the Qinling Orogen, because the Qinling Orogen is characterized by Paleozoic and Neoproterozoic material. In combination with previous research, we suggest that the source of the Chunshuyao Formation is most likely recycled from previous sedimentary rocks from the North China Craton. In the Late Triassic, the Funiu ancient land was uplifted which prevented source material from the Qinling Orogen. Owing to the Indosinian orogeny, the strata to the east of the North China Craton were uplifted and eroded. The Yichuan Basin received detrital material from the North China Craton.


2021 ◽  
Vol 62 (3) ◽  
pp. 1-12
Author(s):  

To constrain the paleo - positions of the South China Cratons in the Rodinia Supercontinent during the Neoproterozoic, the in - situ U - Pb dating, and Hf isotope analysis of the detrital zircon from the Nam Co Complex, Song Ma Suture zone, northwestern Vietnam was performed. The U - Pb isotopic dating on detrital zircons shows that the Nam Co Complex demonstrates the major population (>50%) of around ~850 Ma while the minor population is scattered between ~1.2÷3.0 Ga. The Neoproterozoic age spectrum exhibits a large range of the εHf(t) from strongly negative to positive values ( - 17.418022÷ 14.600527), indicating that the source of the magma for this age range has been not only derived from reworking of the Archean basement rocks, but also generated from the juvenile material. The U - Pb age distribution patterns and Hf isotopic data of the detrital zircon in the Nam Co Complex are compatible with those of the South China Craton rather than those of the Indochina Craton. The data also indicate that sedimentary protoliths of the Nam Co Complex were deposited in a convergent - related basin along the southwestern margin of the South China Craton during the Neoproterozoic. Combined with the similarities of the detrital zircon age between western Cathaysia, Indochina, East Antarctica and East India, it is proved that the South China Craton was situated at the margin of the Rodinia Supercontinent and in close proximity to the Indochina, East Antarctica and East India.


Sign in / Sign up

Export Citation Format

Share Document