Simulation of milk production by dairy cows fed sugarcane top-based diets with locally available supplements under Indian conditions

2005 ◽  
Vol 143 (2-3) ◽  
pp. 217-229 ◽  
Author(s):  
U. K. BEHERA ◽  
E. KEBREAB ◽  
J. DIJKSTRA ◽  
A. G. ASSIS ◽  
J. FRANCE

A model of sugarcane digestion was applied to indicate the suitability of various locally available supplements for enhancing milk production of Indian crossbred dairy cattle. Milk production was calculated according to simulated energy, lipogenic, glucogenic and aminogenic substrate availability. The model identified the most limiting substrate for milk production from different sugarcane-based diets. For sugarcane tops/urea fed alone, milk production was most limited by amino acid followed by long chain fatty acid availability. Among the protein-rich oil cake supplements at 100, 200 and 300 g supplement/kg total DM, cottonseed oil cake proved superior with a milk yield of 5·5, 7·3 and 8·3 kg/day, respectively. This was followed by mustard oil cake with 5·1, 6·5 and 7·6 kg/day, respectively. In the case of a protein-rich supplement (fish meal), milk yield was limited to 6·6 kg/day due to a shortage of long chain fatty acids. However, at 300 g of supplementation, energy became limiting, with a milk yield of 6·7 kg/day. Supplementation with rice bran and rice polishings at 100, 200 and 300 g restricted milk yield to 4·3, 4·9 and 5·5 and 4·5, 5·3 and 6·1 kg/day, respectively, and amino acids became the factor limiting milk production. The diet comprising basal sugarcane tops supplemented by leguminous fodder, dry fodder (e.g. rice or wheat straw) and concentrates at levels of 100, 200 and 300 g supplements/kg total diet DM proved to be the most balanced with a milk yield of 5·1, 6·7 and 9·0 kg/day, respectively.

2011 ◽  
Vol 301 (4) ◽  
pp. E608-E617 ◽  
Author(s):  
Natalia N. Rudovich ◽  
Victoria J. Nikiforova ◽  
Baerbel Otto ◽  
Olga Pivovarova ◽  
Özlem Gögebakan ◽  
...  

The gastric peptide ghrelin promotes energy storage, appetite, and food intake. Nutrient intake strongly suppresses circulating ghrelin via molecular mechanisms possibly involving insulin and gastrointestinal hormones. On the basis of the growing evidence that glucose-dependent insulinotropic polypeptide (GIP) is involved in the control of fuel metabolism, we hypothesized that GIP and/or insulin, directly or via changes in plasma metabolites, might affect circulating ghrelin. Fourteen obese subjects were infused with GIP (2.0 pmol·kg−1·min−1) or placebo in the fasting state during either euglycemic hyperinsulinemic (EC) or hyperglycemic hyperinsulinemic clamps (HC). Apart from analysis of plasma ghrelin and insulin levels, GC-TOF/MS analysis was applied to create a hormone-metabolite network for each experiment. The GIP and insulin effects on circulating ghrelin were analyzed within the framework of those networks. In the HC, ghrelin levels decreased in the absence (19.2% vs. baseline, P = 0.028) as well as in the presence of GIP (33.8%, P = 0.018). Ghrelin levels were significantly lower during HC with GIP than with placebo, despite insulin levels not differing significantly. In the GIP network combining data on GIP-infusion, EC+GIP and HC+GIP experiments, ghrelin was integrated into hormone-metabolite networks through a connection to a group of long-chain fatty acids. In contrast, ghrelin was excluded from the network of experiments without GIP. GIP decreased circulating ghrelin and might have affected the ghrelin system via modification of long-chain fatty acid pools. These observations were independent of insulin and offer potential mechanistic underpinnings for the involvement of GIP in systemic control of energy metabolism.


1987 ◽  
Vol 40 (2) ◽  
pp. 221 ◽  
Author(s):  
DW Pethick ◽  
N Harman ◽  
JK Chong

The role of circulating, non-esterified, long-chain fatty acids (NEFA) as a source of energy for the whole animal and skeletal muscle was investigated in fed non-pregnant sheep at rest and during exercise. Infusion of tracer quantities of [1-14C]oleic or [l-14C]stearic acid was combined with the use of arteriovenous difference studies on fed sheep at rest or during a 2 h period of exercise on a belt treadmill moving at 4� 5 km h -I. At rest all parameters of NEFA metabolism indicated a minimal role for oxidation. Thus the concentration in plasma (0'07 � 0�01 mmol I-I), entry rate (0'08 � 0�02 mmol h- I kg-I body wt), contribution to whole animal oxidation (1'2 � 0'3%) and utilization of NEFA by skeletal muscle (0'046 � 0�008 mmol h- I kg-I muscle) were all low. Exercise prompted a shift to lipolysis and accordingly the above parameters increased markedly some 13-24-fold. The circulating concentration of ketone bodies showed only a small increase during exercise and consequently the role of ketone bodies as an energy source during exercise was minimal. Glucose utilization by skeletal muscle was considerable in animals at rest and it represented the most significant potential fuel of skeletal muscle. Exercise resulted in a sustained increase of 3-4-fold in the utilization of glucose by skeletal muscle. Thus the traditional view that NEF A and not glucose is a predominant fuel of skeletal muscle of fed sheep should be appraised.


1991 ◽  
Vol 31 (4) ◽  
pp. 467 ◽  
Author(s):  
TM Davison ◽  
FP Vervoort ◽  
F Duncalfe

A group of 36 Holstein-Friesian cows in a commercial dairy herd were used to test the effects on milk yield and composition of feeding 0.5 kg/day of a rumen-inert fat supplement containing long-chain fatty acids, given in addition to their normal ration. The group was divided into early and mid lactation cows, and the effect of the supplement was evaluated over a 12-week period of grazing predominantly kikuyu (Pennisetum clandestinum) pastures. There was a non-significant (P>0.05) trend to increased milk yield for cows in mid lactation (9% or 2.8 kg milk/kg fat supplement), no response in early lactation, and an overall response of 0.8 kg milk/kg fat supplement for all cows. There was no effect (P>0.05) of fat supplement on milk components. The lack of a milk response in the early lactation group is discussed in relation to the protein content of the diet and changes in liveweight. The varied responses with stage of lactation mean that feeding systems that can easily differentiate stages of lactation for cows would be required in dairies.


1989 ◽  
Vol 48 (2) ◽  
pp. 475-479 ◽  
Author(s):  
P. H. Henning ◽  
J. H. F. Meyer ◽  
J. J. Prinsloo

The true digestibility of protein from diets containing one of the protein-rich foodstuffs, sunflower oil cake, cottonseed oil cake, maize gluten meal and fish meal, was determined in chickens and in the small intestine of sheep. With the exception of maize gluten meal, a close correlation was found between digestibility in the two species (r = +0·98; P < 0·05) and in the sheep small intestine between the true digestibility of utilizable nitrogen and acid-detergent insoluble nitrogen content of the diet (r = -0·96; P < 0·05).


1992 ◽  
Vol 262 (1) ◽  
pp. R8-R13 ◽  
Author(s):  
S. C. Cunnane ◽  
Z. Y. Chen

Developmental changes in the content and composition of major organ lipid pools are not well known. Our objective was to assess quantitatively the changes in lipids, particularly those containing long-chain fatty acids, in the placenta and the brain, liver, and carcass of the fetal and suckling rat. Pregnant dams were killed at days 15, 18, and 21 (term) of pregnancy and the placentas and fetuses removed and analyzed; suckling rats were killed at days +3, +6, and +9 of lactation. Whereas the long-chain fatty acid content of the phospholipids (mg/g) of the fetal or suckling rat remained relatively constant from day 18 of pregnancy to day +9 of lactation, long-chain fatty acids in triacylglycerols increased from prenatal values by 10- to 12-fold during the first 9 postnatal days. Prenatally, triacylglycerol accounted for no more than 32% of total whole body essential fatty acids (day 21), but postnatally this increased to 81-88%. From day 21 to day +9, the proportion of n-6 and n-3 essential fatty acids within the total triacylglycerol pool of the suckling rat increased 71 and 317%, respectively. We conclude that in the suckling rat, triacylglycerol is quantitatively the most important source of essential fatty acids during at least the first 9 days of life.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 549-553 ◽  
Author(s):  
Thomas Götz ◽  
Peter Böger

AbstractThe first elongation step to form very-long-chain fatty acids (VLCFAs) is catalyzed by the VLCFA-synthase. CoA-activated fatty acids react with malonyl-CoA to condense a C2-unit. As shown with recombinant enzyme this reaction is specifically inhibited by chloroacetamide herbicides. The inhibition is alleviated when the inhibitor (e.g. metazachlor) is incubated together with adequate concentrations of the substrate (e.g. oleoyl-CoA). Malonyl-CoA has no influence. However, once a chloroacetamide has been tightly bound to the synthase after an appropriate time it cannot be displaced anymore by the substrate. In contrast, oleoyl- CoA, is easily removed from the synthase by metazachlor. The irreversible binding of the chloroacetamides and their competition with the substrate explains the very low half-inhibition values of 10-8 м and below. Chiral chloroacetamides like metolachlor or dimethenamid give identical results. However, only the (S)-enantiomers are active.


1990 ◽  
Vol 41 (1) ◽  
pp. 129 ◽  
Author(s):  
KR King ◽  
CR Stockdale ◽  
TE Trigg

This experiment studied the effects of feeding a supplement of a blend of unesterified and saturated long-chain fatty acids on the productivity of dairy cows in mid-lactation. Twenty-three cows in their fourth month of lactation were individually fed ad libitum, a mixed balanced ration based on maize silage, lucerne hay and rolled grain. Varying quantities, up to 1020 g cow-1 day-1 of the fatty acid supplement, were mixed into the ration. Yields of milk and milk products were linearly related to total long-chain fatty acid intake. Milk fat content increased linearly while milk protein content averaged 3.59 (s.d. � 0.15)%. The marginal returns from feeding 1 kg of the supplement were 3.3 kg milk, 0.33 kg fat and 0.07 kg protein. The proportions of C 10:0, C12:0 and C 14:0 fatty acids in milk were decreased, while those of C 18:0 and C18:1 were increased as the result of feeding long-chain fatty acids. The concentration of lipid in plasma was increased, but acetate and D-(3)-hydroxybutyrate levels in blood remained unchanged with increased levels of dietary long-chain fatty acid. Efficiency of milk production was increased by 11% from feeding 1 kg of the supplement. In vivo digestibilities of dry matter, neutral and acid detergent fibres, and dietary long-chain fatty acids were unaffected by supplement.


1998 ◽  
Vol 66 (1) ◽  
pp. 9-20 ◽  
Author(s):  
T. W. J. Keady ◽  
J. J. Murphy

AbstractThe effect of ensiling grass and supplementing the resulting silage with water-soluble carbohydrate in the form of sucrose and undegradable dietary protein (UDP) in the form offish meal on forage intake and milk production and composition were evaluated in an experiment involving 63 mid-lactation Holstein-Friesian cows. Herbage from the primary growth of a predominantly perennial ryegrass sward was zero-grazed (ZG) from 19 April to 16 May 1993. The herbage was mown and picked up with a precision-chop harvester and offered as the sole diet, twice daily, to 18 cows which were on average 186 days into lactation. On 13 May, herbage from the same sward was harvested identically to the ZG herbage and ensiled, treated with formic acid at a rate of 2·85 lit grass. At 53 days after ensiling the silage was offered either as the sole diet (SO) or supplemented with sucrose at 10·3 g/kg fresh silage (SS) or supplemented with sucrose and fish meal each at 10·3 g/kg fresh silage (SSF) to 15 cows per treatment which were on average 164 days into lactation. The feeding period was 28 days for ZG and 21 days for the SO, SS and SSF treatments, and the last 7 days were the main recording interval. Prior to going on to the experimental diets all animals were offered a common silage ad libitum and supplemented with 5 kg of a 180 g/kg crude protein concentrate. Dry-matter intakes (DMI), milk yields and milk composition were recorded during the pre-experimental period and subsequently used as covariates in the statistical analysis. For diets ZG, SO, SS and SSF, forage DMI (kg/day), total DMI (kg/day), milk yields (kg/day), fat concentration (g/kg) and protein concentration (g/kg) were 14·4,14·0,13·7 and 13·9 (average s.e.d. = 0·55); 14·4,14·0,14·5 and 15·4 (average s.e.d. = 0·59); 15·4, 14·4, 14·5 and 16·7 (average s.e.d. = 0·42); 36·6, 38·6, 38·6 and 37·5 (average s.e.d. = 2·67); 33·0, 30·7, 32·2 and 32·8 (average s.e.d. = 0·75). Nitrogen (N) digestibility was higher on SO and SSF (P < 0·05) relative to ZG with SS being intermediate, otherwise treatment did not alter (P > 0·05) diet apparent digestibility. Ensilage increased the immediately soluble N fraction (a value) and degradability of N (P < 0·001) relative to ZG. It is concluded that ensilage had no effect on forage DMI but decreased milk yield and protein concentration relative to the parent herbage. The positive response in milk yield due to supplementation of the silage-based diet with sucrose and fish meal and the lack of response to sucrose supplementation alone suggests that nutrients absorbed from the digestive tract of cows offered silage-based diets are more limiting in protein or specific amino acids supplied by fish meal than in energy. The decrease in animal performance due to ensiling may be overcome by supplementation of silage-based diets with UDP at sufficient levels to equate that of the parent herbage.


Sign in / Sign up

Export Citation Format

Share Document