The effects of cultivar, season and site on variation in grain N concentration and N use efficiency of winter wheat in Northern Ireland

2011 ◽  
Vol 150 (4) ◽  
pp. 460-472 ◽  
Author(s):  
E. WHITE

SUMMARYA detailed study of nitrogen use efficiency (NUE) and its components in three cultivars of winter wheat, Hereward, Rialto and Riband was undertaken in cultivar trials conducted in Northern Ireland in 1998 and 1999. Yield, grain N concentration, harvest index (HI), nitrogen harvest index (NHI), N uptake efficiency (NUpE), total N uptake, grain N off-take, N utilization efficiency (NUtE) and NUE itself all showed significant variation between sites. Cvars Hereward and Rialto had similar mean values across all the sites for many of the characteristics, with Riband usually differing. In all but one characteristic, grain N concentration, the responses of the three cultivars varied significantly from trial to trial and this, along with the substantial variation between sites, indicates that genetic control of the characteristics is partial. The amount of N applied as fertilizer accounted for little of the variation among the trials with weak associations for NUpE, which decreased, and grain yield, which increased with increasing fertilizer N. Neither grain yield nor NUE was associated with the amount of N taken up by the crop, but grain N concentration increased and NUtE decreased significantly. HI and NHI differed significantly among the cultivars, diverging at higher N uptakes, with Hereward and Rialto being similar and distinctly different from Riband. Grain yield was only weakly associated with NUpE but was strongly and positively associated with NUtE and NUE. The strong negative association between NUtE and NUpE highlights the potential and the urgency of understanding factors influencing uptake of nitrogen by crops. The extent of the non-genetic, i.e. environmental and management, variation in the characteristics, along with the relative similarity of the cultivar means, throws up a challenge to plant breeders, agronomists and researchers wishing to improve NUE genetically and through management. As with yield and other characteristics, a large number of trials will be required to identify consistent differences in NUE among cultivars. Thus, while mechanisms underlying NUE, NUpE and NUtE need to be understood, the possibility of using the HGCA UK Recommended List database to investigate NUE and identify cultivars with improved NUE should also be considered. Since in each of the HGCA trials cultivars have access to the same available N, and since grain yield=available N×NUE, grain yield itself is a surrogate for the NUE of cultivars. Grain N concentration is only determined in a few cultivars at present but could be used as an indicator of optimal N availability in individual trials, allowing variation in NUE of cultivars in response to agro-ecological factors on NUE to be studied.

2022 ◽  
Vol 12 ◽  
Author(s):  
Yushi Zhang ◽  
Yubin Wang ◽  
Churong Liu ◽  
Delian Ye ◽  
Danyang Ren ◽  
...  

Increasing use of plant density or/and nitrogen (N) application has been introduced to maize production in the past few decades. However, excessive planting density or/and use of fertilizer may cause reduced N use efficiency (NUE) and increased lodging risks. Ethephon application improves maize lodging resistance and has been an essential measure in maize intensive production systems associated with high plant density and N input in China. Limited information is available about the effect of ethephon on maize N use and the response to plant density under different N rates in the field. A three-year field study was conducted with two ethephon applications (0 and 90 g ha−1), four N application rates (0, 75, 150, and 225 kg N ha−1), and two plant densities (6.75 plants m−2 and 7.5 plants m−2) to evaluate the effects of ethephon on maize NUE indices (N agronomic efficiency, NAE; N recovery efficiency, NRE; N uptake efficiency, NUpE; N utilization efficiency, NUtE; partial factor productivity of N, PFPN), biomass, N concentration, grain yield and N uptake, and translocation properties. The results suggest that the application of ethephon decreased the grain yield by 1.83–5.74% due to the decrease of grain numbers and grain weight during the three experimental seasons. Meanwhile, lower biomass, NO3- and NH4+ fluxes in xylem bleeding sap, and total N uptake were observed under ethephon treatments. These resulted in lower NAE and NUpE under the ethephon treatment at a corresponding N application rate and plant density. The ethephon treatment had no significant effects on the N concentration in grains, and it decreased the N concentration in stover at the harvesting stage, while increasing the plant N concentration at the silking stage. Consequently, post-silking N remobilization was significantly increased by 14.10–32.64% under the ethephon treatment during the experimental periods. Meanwhile, NUtE significantly increased by ethephon.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 313 ◽  
Author(s):  
Lukas Prey ◽  
Moritz Germer ◽  
Urs Schmidhalter

Fungicide intensity and sowing time influence the N use efficiency (NUE) of winter wheat but the underlying mechanisms, interactions of plant traits, and the temporal effects are not sufficiently understood. Therefore, organ-specific responses in NUE traits to fungicide intensity and earlier sowing were compared at two nitrogen (N) levels for six winter wheat cultivars in 2017. Plants were sampled at anthesis and at maturity and separated into chaff, grain, culms, and three leaf layers to assess their temporal contribution to aboveground dry matter (DM) and N uptake (Nup). Compared to the control treatment, across cultivars, the treatment without fungicide mostly exerted stronger and inverse effects than early sowing, on grain yield (GY, −12% without fungicide, +8% n.s. for early sowing), grain Nup (GNup, −9% n.s., +5% n.s.) as well as on grain N concentration (+4%, −2% n.s.). Grain yield in the treatment without fungicide was associated with similar total DM, as observed in the control treatment but with lower values in harvest index, thousand kernel weight, N use efficiency for GY (NUE) and N utilization efficiency. Lower GNup was associated with similar vegetative N uptake but lower values in N translocation efficiency and N harvest index. In contrast, early sowing tended to increase total DM at anthesis and maturity as well as post-anthesis assimilation, at similar harvest index and increased the number of grains per spike and total N use efficiency. Total N uptake increased after the winter season but was similar at anthesis. Although the relative N response in many traits was lower without fungicide, few fungicide x interactions were significant, and the sowing date did not interact either with N fertilization for any of the N and DM traits. The results demonstrate the positive effects of fungicides and earlier sowing on various traits related to yield formation and the efficient use of nitrogen and are discussed based on various concepts.


2007 ◽  
Vol 145 (5) ◽  
pp. 481-490 ◽  
Author(s):  
L. O. OMOIGUI ◽  
S. O. ALABI ◽  
A. Y. KAMARA

SUMMARYIdentification of plant cultivars efficient for nitrogen (N) uptake and utilization may contribute to the improvement of crop yield potential in areas of low-N (LN) availability. Three cycles of full-sib recurrent selection were applied on a LN pool-yellow (LNP-Y) maize population to improve its level of tolerance to low soil N in the savannah ecosystem. The progress after three cycles of selection was evaluated for two years (2000 and 2001). The objectives of the study were to classify the cycles in relation to response to N levels under field conditions and to investigate the progress in selection for improved grain yield and other agronomic traits at two N levels, LN (30 kg N/ha) and high-N (HN, 90 kg N/ha). The experiment was conducted under field conditions at the LN screening site of the Institute for Agricultural Research, Samaru, in the northern Guinea savannah of Nigeria. The experimental design consisted of randomized complete blocks with three replications. The aboveground biomass and grain at harvest were analysed for total N content. The results indicated differences in plant population response to N levels. Mean grain yield ranged from 2·5 t/ha in cycle 1 to 2·7 t/ha in cycle 3 under LN and from 4·2 t/ha in cycle 1 to 4·3 t/ha in cycle 3 under HN. The observed gains were 4·8% per cycle under LN and 1·4% per cycle under HN. Nitrogen use efficiency (NUE) traits, viz. N uptake efficiency and N utilization efficiency were positively affected by selection. Gains for N utilization efficiency were 6·3% per cycle at LN and 9·1% per cycle at HN, while observed gains for NUE were 3·9% at LN and 1·4% per cycle at HN. However, N utilization efficiency was identified as the most important component of NUE for selecting cycles of selection in population development. Total N content and N utilization efficiency were significantly correlated with each other at LN, and had a significant, positive, direct effect on grain yield. Grain yield was positively correlated with N content and N utilization efficiency at both N levels. Also, a significant positive correlation was observed at LN between 300 kernel weight and N utilization efficiency. N utilization efficiency was correlated with ears/plant at HN and negatively correlated with anthesis-silking interval (ASI). The present study revealed that selection for improved productivity under LN stress conditions could be further enhanced by simultaneously selecting for high grain yield performance based on N utilization efficiency and on secondary traits, such as ears/plant, 300 kernel weight, and reduced ASI.


Author(s):  
A.K. Dhaka ◽  
Satish Kumar ◽  
Bhagat Singh ◽  
Karmal Singh ◽  
Amit Kumar ◽  
...  

An experiment was conducted to study nitrogen use efficiency in pigeonpea at Research farm, CCS Haryana Agricultural University, Hisar, India having three nipping treatments (no nipping, nipping at just start of branching and nipping at flower initiation) and five fertility levels (control, 20 kg N + 40 kg P2O5/ha, 30 kg N + 40 kg P2O5 /ha, 40 kg N + 40 kg P2O5/ha and 20 kg N + 40 kg P2O5/ha + foliar spray of 2% N immediately after nipping) replicated thrice in split plot design during growing seasons of 2016 and 2017. Nipping at start of branching reduced the plant height, while increased primary and secondary branches, pods/plant and yield over no nipping. Significantly higher total N uptake, protein content, net return, B: C, agronomical NUE, physiologic NUE, agro-physiologic NUE, apparent recovery efficiency, utilization efficiency of N and partial N balance were improved with nipping at start of branching. Among fertility levels, 40 kg N + 40 kg P2O5 / ha recorded significantly higher yield attributes with 39.7 per cent higher seed yield over control. Significantly higher agronomic NUE, physiologic NUE, agro-physiological NUE, apparent recovery efficiency, utilization efficiency of N, partial N balance and NER were recorded with 20 kg/ha as compared to higher nitrogen doses.


2011 ◽  
Vol 21 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Paolo Benincasa ◽  
Marcello Guiducci ◽  
Francesco Tei

Nitrogen (N) use efficiency (NUE) of crops is examined by taking into account both plant N uptake efficiency, focusing on the recovery of fertilizer-N, and the utilization efficiency of the absorbed N. The latter is further analyzed as the overall effect of the absorbed N on crop leaf area, light absorption, photosynthesis, crop growth, biomass partitioning, and yield. The main sources of variation for the NUE of crops are considered, and several of them are discussed based on results from field experiments carried out at the University of Perugia (central Italy) between 1991 and 2008 on sweet pepper (Capsicum annuum), lettuce (Lactuca sativa), and processing tomato (Solanum lycopersicum). More specifically, the effects of species, cultivar, fertilizer-N rate, form and application method (mineral and organic fertilization, green manuring, fertigation frequency), and sink limitation are reported. Implications for residual N in the soil and leaching risks are also discussed. The fertilizer-N rate is the main factor affecting crop NUE for a given irrigation management and rainfall regime. Indeed, avoiding over fertilization is the first and primary means to match a high use efficiency and economic return of fertilizer-N with limited environmental risks from nitrate leaching. The form and application method of fertilizer-N also may affect the NUE, especially in the case of limiting or overabundant N supply. Particularly, high fertigation frequency increased the recovery of fertilizer-N by the crop. It is suggested that species-specific curves for critical N concentration (i.e., the minimum N concentration that allows the maximum growth) can be the reference to calibrate the quick tests used to guide dynamic fertilization management, which is essential to achieve both the optimal crop N nutritional status and the maximum NUE.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1157
Author(s):  
Lawrence Aula ◽  
Peter Omara ◽  
Eva Nambi ◽  
Fikayo B. Oyebiyi ◽  
William R. Raun

Improvement of nitrogen use efficiency (NUE) via active optical sensors has gained attention in recent decades, with the focus of optimizing nitrogen (N) input while simultaneously sustaining crop yields. To the authors’ knowledge, a comprehensive review of the literature on how optical sensors have impacted winter wheat (Triticum aestivum L.) NUE and grain yield has not yet been performed. This work reviewed and documented the extent to which the use of optical sensors has impacted winter wheat NUE and yield. Two N management approaches were evaluated; optical sensor and conventional methods. The study included 26 peer-reviewed articles with data on NUE and grain yield. In articles without NUE values but in which grain N was included, the difference method was employed to compute NUE based on grain N uptake. Using optical sensors resulted in an average NUE of 42% (±2.8% standard error). This approach improved NUE by approximately 10.4% (±2.3%) when compared to the conventional method. Grain yield was similar for both approaches of N management. Optical sensors could save as much as 53 (±16) kg N ha−1. This gain alone may not be adequate for increased adoption, and further refinement of the optical sensor robustness, possibly by including weather variables alongside sound agronomic management practices, may be necessary.


2017 ◽  
Vol 155 (9) ◽  
pp. 1407-1423 ◽  
Author(s):  
E. MANSOUR ◽  
A. M. A. MERWAD ◽  
M. A. T. YASIN ◽  
M. I. E. ABDUL-HAMID ◽  
E. E. A. EL-SOBKY ◽  
...  

SUMMARYAgricultural practices are likely to lower nitrogen (N) fertilization inputs for economic and ecological limitation reasons. The objective of the current study was to assess genotypic variation in nitrogen use efficiency (NUE) and related parameters of spring wheat (Triticum aestivumL.) as well as the relative grain yield performance under sandy soil conditions. A sub-set of 16 spring wheat genotypes was studied over 2 years at five N levels (0, 70, 140, 210 and 280 kg N/ha). Results indicated significant differences among genotypes and N levels for grain yield and yield components as well as NUE. Genotypes with high NUE exhibited higher plant biomass, grain and straw N concentration and grain yield than those with medium and low NUE. Utilization efficiency (grain-NUtE) was more important than uptake efficiency (total NUpE) in association with grain yield. Nitrogen supply was found to have a substantial effect on genotype; Line 6052 as well as Shandawel 1, Gemmiza 10, Gemmiza 12, Line 6078 and Line 6083 showed higher net assimilation rate, more productive tillers, increased number of spikes per unit area and grains per spike, extensive N concentration in grain and straw, heavier grains, higher biological yield and consequently maximized grain yield. The relative importance of NUE-associated parameters such as nitrogen agronomic efficiency, nitrogen physiological efficiency and apparent nitrogen recovery as potential targets in breeding programmes for increased NUE genotypes is also mentioned.


2008 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Dong Pei ◽  
Yanmei Wang

Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 541
Author(s):  
Gerhard Moitzi ◽  
Reinhard W. Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

Improvements in nitrogen (N) use efficiency in crop production are important for addressing the triple challenges of food security, environmental degradation and climate change. The three fertilizers, calcium ammonium nitrate (CAN), urea (Urea) and stabilized urea (Ureastab), were applied at a rate of 160 kg N ha−1 with two or three splits to winter wheat (Triticum aestivum L.) in the Pannonian climate region of eastern Austria. On average, over all fertilization treatments, the grain yield (GY) increased by about a quarter and the grain N concentration (GNC) doubled compared to the control without fertilization. Consequently, the grain N yield (NYGRAIN) was increased with N fertilization by 154%. The GY increased due to a higher grain density with no differences between N fertilizers but with a tendency of a higher grain yield with three compared to two splits. Three splits also slightly increased the GNC and consequently the NYGRAIN of CAN and Ureastab in one year. The removal of N fertilizer with the NYGRAIN (N surplus) was higher than the amount of applied fertilizer. Fertilization decreased the N use efficiency (NUE), the N uptake efficiency (NUpE) and the N utilization efficiency (NUtE) but increased the soil mineral nitrate (NO3-N) at harvest and the apparent N loss (ANL). Three compared to two applications resulted in a higher NO3-N at harvest but also a lower N surplus due to partly higher NYGRAIN. Consequently, the ANL was lower with three compared to two splits. Also, the NUpE and the apparent N recovery efficiency (ANRE) were higher with three splits. The best N treatment regarding highest above-ground biomass yield with lowest N surplus, N balance and ANL was the three-split treatment (50 CAN, 50 CAN, 60 liquid urea ammonium nitrate). Three splits can, under semi-arid conditions, be beneficial when aiming high-quality wheat for bread-making and also for reducing the N loss. Whereas, two splits are recommended when aiming only at high GY, e.g., for ethanol-wheat production.


Sign in / Sign up

Export Citation Format

Share Document