scholarly journals Effects of pre-incubation in sheep and goat saliva on in vitro rumen digestion of tanniferous browse foliage

2013 ◽  
Vol 151 (6) ◽  
pp. 898-906
Author(s):  
H. AMMAR ◽  
R. BODAS ◽  
J. S. GONZÁLEZ ◽  
A. Z. M. SALEM ◽  
F. J. GIRÁLDEZ ◽  
...  

SUMMARYA two-stage in vitro procedure was used for assessing the activity of parotid saliva to enhance rumen digestion of tanniniferous browse foliage. The procedure consisted of pre-incubation in saliva for 4 h at 39 °C followed by incubation in diluted buffered rumen fluid. Using this procedure, a study was conducted to examine the effects of pre-incubation in sheep (SS), quebracho-supplemented sheep (qSS) and goat (GS) parotid saliva or in McDougall's artificial saliva (AS, used as control) on in vitro rumen fermentation kinetics (estimated using the gas production technique) of browse foliage from six shrub species (Cytisus scoparius, Genista florida, Rosa canina, Quercus pyrenaica, Cistus laurifolius and Erica australis) collected over two seasons (spring and autumn), thus varying the in vitro digestibility (from 0·597 to 0·903) and tannin contents (from 3 to 130 g tannic acid equivalent/kg dry matter (DM)). Saliva was collected from four sheep and four goats fed alfalfa hay, and from four sheep fed the same alfalfa hay but supplemented with quebracho (rich in condensed tannins) for 60 d, through a cannula inserted in the parotid duct, and rumen fluid was always from sheep fed alfalfa hay. The extent of degradation when browse foliage was pre-incubated in qSS was similar to that observed with control AS (0·449 v. 0·452, respectively), and 8% less than the value with pre-incubation in SS (0·490). In vitro fermentation kinetics (gas production parameters) of browse foliage were not significantly enhanced with pre-incubation in qSS compared with SS, whereas in vitro digestibility and extent of degradation in the rumen were significantly reduced with qSS compared with SS. After pre-incubation in sheep and goat saliva, the extent of browse foliage degradation was significantly increased by 4–8% compared with pre-incubation in the control AS. Fermentation efficiency of browse foliage was increased (P<0·05) with pre-incubation in GS compared with SS. Sheep or goat saliva may have some activity to affect in vitro rumen fermentation of the foliage samples incubated, enhancing extent of degradation of tannin-rich browse. However, a relationship between the magnitude of this effect and the tannin content of the browse foliage could not be established, suggesting that sheep and goat saliva may not be particularly important in neutralizing tannins.

2017 ◽  
Vol 57 (8) ◽  
pp. 1607 ◽  
Author(s):  
S. C. L. Candyrine ◽  
M. F. Jahromi ◽  
M. Ebrahimi ◽  
J. B. Liang ◽  
Y. M. Goh ◽  
...  

An in vitro gas-production study was conducted to compare differences in rumen fermentation characteristics and the effect of supplementation of 4% linseed oil as a source of polyunsaturated fatty acids on the rumen fermentation profile in rumen fluid collected from goats and sheep. Rumen fluid for each species was obtained from two male goats of ~18 months old and two sheep of similar sex and age fed the similar diet containing 30% alfalfa hay and 70% concentrates. The substrate used for the fermentation was alfalfa hay and concentrate mixture (30:70) without (control) and with addition of linseed oil. The experiment was a two (inoculums) × two (oil levels) factorial experiment, with five replicates per treatment, and was repeated once. Rumen fermentation characteristics, including pH, fermentation kinetics, in vitro organic matter digestibility (IVOMD), volatile fatty acid (VFA) production and microbial population were examined. Results of the study showed that gas-production rate (c), IVOMD, VFA production and population of total bacteria and two cellulolytic bacteria (Ruminococus albus and Butyrivibrio fibrisolvens) from rumen fluid of goat were significantly (P &lt; 0.05) higher than those of samples from sheep. Irrespective of sources of inoculums, addition of oil did not affect fermentation capacity, IVOMD and total VFA production. The higher B. fibrisolvens population (associated with bio-hydrogenation) in rumen fluid of goat seems to suggest that polyunsaturated fatty acids are more prone to bio-hydrogention in the rumen of goat than in sheep. This assumption deserves further investigation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 466-466
Author(s):  
Angela R Boyer ◽  
Yun Jiang ◽  
Alon Blakeney ◽  
Dennis Nuzback ◽  
Brooke Humphrey ◽  
...  

Abstract Vistore® minerals are hydroxychloride minerals that feature high metal content and improved bioavailability. This study was conducted to compare different sources of zinc (Zn) on in vitro rumen fermentation parameters. Three ruminally-cannulated Jersey heifers were adapted to a lactation diet for two weeks before used as donors. Three sources of Zn were tested at 20 ppm: No supplemental Zn (CON), ZnSO4, Vistore Zn, and another Zn hydroxychloride (Vistore-competitor). The concentration of Zn in this study was selected from a titration study (0 to 40 ppm ZnSO4) to identify the minimum concentration of ZnSo4 affecting rumen fermentation. The lactation diet (TMR) was dried and ground to 1mm and used as substrate. Rumen fluid was collected two hours after feeding. Substrate (0.5 g) was inoculated with 100 mL of 3:1 McDougall’s buffer: ruminal flued mixture at 39ºC for 24 h. Each treatment was run in triplicate and in three runs. Data were analyzed with R 3.0. The model included fixed effect of treatment and random effect of run. ZnSO4 reduced (P &lt; 0.05) maximum gas production, DMD (54 vs. 55.9%) and cellulose (27.5 and 40.7%) digestibility. acetate to propionate ration (2.20 vs. 2.24) and NH3-N concentration (6.0 vs. 7.0 mg/dL), increased (P &lt; 0.05) propionate % (27.2 vs 26.7%) compared to control. Vistore had higher pH than control (6.44 vs. 6.40, P = 0.02) but did not affect other parameters compared to CON. Vistore-competitor reduced total VFA production compared to control, ZnSO4, and Vistore (94 vs. 102, 106 and 107 mM, respectively, P = 0.01) but did not affect other parameters. In general, Vistore Zn maintained in vitro ruminal fermentation and digestibility, while ZnSO4 had negative effects on both fermentation and digestibility and Vistore-competitor reduced total VFAs. Results indicate hydroxychloride minerals may stabilize rumen parameters versus sulfate sources but different hydroxychloride sources appear to influence rumen parameters differently.


1997 ◽  
Vol 1997 ◽  
pp. 196-196
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

Recently, the automatic in vitro gas production techniques (e.g. Cone. 1994; Theodorou et al., 1994) have been developed to study rumen fermentation kinetics. Many approaches have been taken. This work investigates the suitability of different methods for estimating the rumen fermentation of two starch rich feedstuffs.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 635 ◽  
Author(s):  
Ives C. S. Bueno ◽  
Roberta A. Brandi ◽  
Gisele M. Fagundes ◽  
Gabriela Benetel ◽  
James Pierre Muir

Animal feeding behavior and diet composition determine rumen fermentation responses and its microbial characteristics. This study aimed to evaluate the rumen fermentation kinetics of domestic ruminants feeding diets with or without condensed tannins (CT). Holstein dairy cows, Nelore beef cattle, Mediterranean water buffalo, Santa Inês sheep and Saanen goats were used as inoculum donors (three animals of each species). The substrates were maize silage (Zea mays), fresh elephant grass (Pennisetum purpureum), Tifton-85 hay (Cynodon spp.) and fresh alfalfa (Medicago sativa). Acacia (Acacia molissima) extract was used as the external CT source. The in vitro semi-automated gas production technique was used to assess the fermentation kinetics. The experimental design was completely randomized with five inoculum sources (animal species), four substrates (feeds) and two treatments (with or without extract). The inclusion of CT caused more severe effects in grazing ruminants than selector ruminants.


2014 ◽  
Vol 153 (1) ◽  
pp. 163-176 ◽  
Author(s):  
A. GALLO ◽  
G. GIUBERTI ◽  
T. BERTUZZI ◽  
M. MOSCHINI ◽  
F. MASOERO

SUMMARYMoulds belonging to Penicillium section roqueforti are common contaminants of feedstuffs and produce several mycotoxins that can cause health hazards when ingested by farm animals. Among these, PR toxin (PR), mycophenolic acid (MY) and roquefortine C (RC) have been frequently detected in forages, particularly silages. The aims of the current trials were to study the effects of the presence of pure mycotoxins on in vitro rumen fermentation parameters and to assess their stability in the rumen environment. Two successive in vitro gas production experiments were carried out: a central composite design with four replications of central point (CCD) and a completely randomized design with a fully factorial arrangement of treatments (FFD). In CCD, the effects of PR, MY and RC concentrations in diluted rumen fluid (i.e. 0·01, 0·30, 1·01, 1·71 and 2·00 μg of each mycotoxin/ml) were tested. Gas volume produced after 48 h of incubation (Vf) decreased linearly as concentrations of RC and MY in diluted rumen fluid increased, with marginal effects similar for two mycotoxins, being respectively −14·6 and −13·4 ml/g organic matter (OM) for each 1·0 μg/ml of increment in mycotoxin concentration. Similarly, total volatile fatty acid (VFA) production decreased quadratically as concentrations of RC and MY increased, with marginal effects about two times higher for MY than RC, being −4·22 and −2·62 mmol/l for each 1·0 μg/ml of increment in mycotoxin concentration. With respect to maximum Vf (i.e. 410·6 ml/g OM) and VFA (98·06 mmol/l) values estimated by the model, decreases of 13·6 and 15·2% were obtained when incubating the highest RC and MY concentrations, respectively. The PR did not interfere with rumen fermentation pattern and it was not recovered after 48 h of incubation, whereas the stabilities of MY and RC in rumen fluid were similar and on average equal to about 50%. On the basis of CCD results, a second experiment (FFD) was carried out in which only effects of MY and RC concentrations (i.e. 0, 0·67, 1·33 and 2·00 μg of each mycotoxin/ml of diluted rumen fluid) were tested. Data from FFD showed Vf decreased linearly when concentrations of MY and RC increased, with marginal effect two-folds higher for MY than for RC (−11·1 ml/g OM and −6·7 ml/g OM, respectively). Similar marginal effects of MY and RC in decreasing VFA production were recorded: −2·38 and −2·86 mmol/l for each 1·0 μg/ml of increment in mycotoxin concentration, respectively. At the highest RC and MY tested concentrations, Vf and VFA decreased by 8·7 and 10·7%, respectively, over maximum estimated values. In FFD, the average amounts of MY and RC recovered in rumen fluid after 48 h of incubation were 79·0 and 40·6%, respectively. In conclusion, the MY and RC from standards interfered with rumen microorganisms at relatively low levels and were partially stable in the rumen environment after 48 h of incubation. These findings suggested that MY and RC could interfere with digestive processes and might represent a potential risk for ruminants fed diets containing feeds contaminated by mycotoxins produced by P. roqueforti.


Author(s):  
Ahmed M. El-Waziry ◽  
Saeid M. Basmaeil ◽  
Abdallah N. Al-Owaimer ◽  
Hassan M. Metwally ◽  
Muttaher H. Ali ◽  
...  

2020 ◽  
Vol 8 (8) ◽  
pp. 1160 ◽  
Author(s):  
Jiangkun Yu ◽  
Liyuan Cai ◽  
Jiacai Zhang ◽  
Ao Yang ◽  
Yanan Wang ◽  
...  

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.


Author(s):  
S. Jafari ◽  
Y.M. Goh ◽  
M. A. Rajion ◽  
M. Ebrahimi

The aim of this study was to test the effect of bamboo leaf (BL) on rumen methane gas production and rumen fermentation characteristics, in vitro. Different amounts of BL; CON (0 %), Low BL (LBL, 10 %), Medium BL (MBL, 15%) and High BL (HBL, 25%) of replacement with alfalfa hay (AH) in substrate (50 % concentrate + 50 % AH) were mixed with 30 millilitre (mL) of buffered rumen liquor for 48 h of incubation. Total gas production (mL/250 mg DM) was not affected (P>0.05) among BL treatment groups at different times of incubation. Production of methane gas (mL/250mg DM) decreased at a declining rate (P less than 0.05) with higher BL levels. Methane gas inhibitory effects of BL treatment groups as compared with CON were; 29%, 35% and 62% for LBL, MBL and HBL, respectively. The ratio of acetic/propionic was lowest (P less than 0.05) for HBL (1.67) as compared to CON (2.09).


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 471-472
Author(s):  
Ana Paula Tarozo ◽  
Annelise Aila G Gomes Lobo ◽  
Yuli Andrea A Peña Bermudez ◽  
Danny Alexander Rojas Moreno ◽  
Rafaela Zuliani Spalato ◽  
...  

Abstract Currently, the use of feed additives appears as an alternative in reducing the environmental impact of animal agriculture, reducing the emission of greenhouse gases and increasing the acceptability of exports in international trade. Thus, the objective of the present study was to evaluate the in vitro rumen fermentation parameters by adding 4.5% ammonium nitrate and 30 ppm of the additive sodium monensin to beef cattle diets, searching for the best alternative to mitigate methane production. The experiment was performed in an in vitro gas production system, and the fermentation kinetics, methanogenesis and short-chain fatty acid (SCFA) production were studied. Regarding methanogenesis, it was observed that the diet with ammonium nitrate showed higher in vitro degradability in DM (P = 0.017) and lower methane production (in ml/g of DM; P = 0.0088), compared to the diet with sodium monensin. Considering the fermentation kinetics, it can be stated that acetate production in molar (%) was lower in control and monensin diets, and higher in nitrate and nitrate + monensin diets (P &lt; 0.0001). It is concluded that both treatments ammonium nitrate + sodium monensin and ammonium nitrate alone have mitigating effect on methane emission, when compared to the control treatment. However, ammonium nitrate is more effective in this regard, producing less methane in vitro and having no negative effect on rumen fermentation parameters.


Sign in / Sign up

Export Citation Format

Share Document