The development of a dynamic, mechanistic, thermal balance model for Bos indicus and Bos taurus

2013 ◽  
Vol 152 (3) ◽  
pp. 464-482 ◽  
Author(s):  
V. A. THOMPSON ◽  
L. G. BARIONI ◽  
T. R. RUMSEY ◽  
J. G. FADEL ◽  
R. D. SAINZ

SUMMARYThe dynamic model presented in the current paper estimates heat production and heat flow between growing and mature cattle (Bos indicus and Bos taurus) and the surrounding environment. Heat production was calculated using the NRC (2000) and heat flows between the animal and the environment were based largely on existing models and physical principles. Heat flows among the body core, the skin, the coat and the environment were calculated. Heat flows from and to the environment included solar radiation, long wave radiation, convection and evaporative heat loss. Physiological responses of cattle (sweating, panting and vasodilation) were modelled through mechanistic equations. The model required weather (radiation, temperature, wind and vapour pressure), animal (body-core weight and genotype-specific parameters) and dietary inputs (dry matter intake rates and diet composition) and estimated heat balance and the physiological responses of the animal to within-day weather variation. The current paper has focused on heat stress, although the model was designed to run under both hot and cold climatic conditions. The model developed in the current paper provides researchers and livestock producers with the ability to predict heat stress and to evaluate mitigating procedures.

Author(s):  
J. Sai Prasanna ◽  
S.T. Viroji Rao ◽  
M. Gnana Prakash ◽  
Suresh Rathod ◽  
P. Kalyani ◽  
...  

Background: Growing demand for improving milk production and rising temperatures due to global warming has increased the thermal load on dairy animals. Physiological parameters such as respiration rate and body temperature mainly determine the adaptability of animals to climate stress. During genetic adaptation, Bos indicus cattle have acquired thermo tolerant genes and when exposed to heat stress conditions, the Bos indicus cattle have lower respiration rates and rectal temperatures than Bos taurus animals. The present study was aimed to study the effect of seasons on the physiological responses in Sahiwal and crossbred cows. Methods: A total of 50 crossbred cows maintained at Military dairy Farm, Secunderabad and 50 Sahiwal cows maintained at Livestock Farm Complex, College of Veterinary Science, Rajendranagar, PVNRTVU were utilized for the present investigation. The study was conducted during summer (THI = 83.71±0.01), rainy (THI = 71.37±0.01) and winter (THI = 66.69±0.01) seasons. Changes in respiration rate (RR), rectal temperature (RT) and heat tolerance coefficient (HTC) were observed in different seasons in Sahiwal and crossbred cows. Result: RR (breaths/ min) in Sahiwal cows during summer, rainy and winter were 28.56±0.38, 23.38±0.38 and 20.54±0.38 respectively whereas RR (breaths/ min) in crossbred cows were 44.58±0.38, 25.94±0.38 and 21.90±0.38 respectively. In Sahiwal cows RT (°C) during summer, rainy and winter were 38.52±0.03, 38.23±0.03 and 38.13±0.03 respectively whereas RT (°C) in crossbred cows were 39.22±0.02, 38.72±0.03 and 37.80±0.03 respectively. The magnitude of increase in RR, RT and HTC were found to be higher during summer compared to other seasons in both Sahiwal and crossbred cows. It was observed that Sahiwal cows are less sensitive to heat stress and are better able to regulate their body temperature than crossbred cows when environmental temperature increases during summer. The HTC values were lower in Sahiwal cows in all the seasons studied indicating better thermo tolerance when compared to the crossbred cows.


2021 ◽  
pp. 102998
Author(s):  
Bianca Vilela Pires ◽  
Nedenia Bonvino Stafuzza ◽  
Luara Afonso de Freitas ◽  
Maria Eugênia Zerlotti Mercadante ◽  
Ester Silveira Ramos ◽  
...  

2013 ◽  
Vol 79 (2) ◽  
pp. 351-357 ◽  
Author(s):  
C.F. Silva ◽  
E.S. Sartorelli ◽  
A.C.S. Castilho ◽  
R.A. Satrapa ◽  
R.Z. Puelker ◽  
...  
Keyword(s):  

1966 ◽  
Vol 21 (6) ◽  
pp. 1784-1790 ◽  
Author(s):  
J. D. Skinner ◽  
G. N. Louw
Keyword(s):  

2006 ◽  
Vol 84 (4) ◽  
pp. 972-985 ◽  
Author(s):  
D. T. Beatty ◽  
A. Barnes ◽  
E. Taylor ◽  
D. Pethick ◽  
M. McCarthy ◽  
...  

2011 ◽  
Vol 23 (1) ◽  
pp. 203
Author(s):  
F. Paludo ◽  
M. M. Pereira ◽  
C. C. R. Quintao ◽  
L. T. Iguma ◽  
M. M. Gioso ◽  
...  

Heat stress has been a challenge for bovine reproduction in tropical and subtropical environments. Although the role of the oocyte in thermotolerance has been studied, little attention has been paid to the contributions of sperm to embryo resistance to heat shock. The current study aimed to evaluate the development of fertilized and nonfertilized (parthenogenetic) bovine embryos undergoing heat stress during the pre-implantation stage. Cumulus–oocyte complexes obtained from ovaries collected from Bos indicus × Bos taurus crossbred cows at slaughter were in vitro matured with TCM-199 supplemented with 20 μg mL–1 of FSH, under 5% CO2 at 38.5°C for 24 h. Afterward, oocytes were randomly allocated into 2 groups: 1) IVF and 2) PART (chemical activation for parthenogenesis induction). In vitro-fertilized oocytes were cultured with 2.0 × 106 Holstein sperm mL–1 in Fert-TALP medium supplemented with heparin, for 20 h. For chemical activation, oocytes were activated with calcium ionomycin for 4 min, followed by 6-DMAP for 4 h, both in CR2aa medium supplemented with 0.1% BSA. Presumptive IVF (n = 1 262) or PART (n = 1 206) zygotes were denuded by vortexing and cultured in CR2aa medium with 2.5% of FCS under 5% CO2, 5% O2, and 90% N2 at 38.5°C. At 44 h post-insemination or chemical activation, embryos were exposed to 38.5 or 41°C for 12 h in an atmosphere of 5% CO2, 5% O2, and 90% N2. After that, embryos were cultured at 38.5°C under 5% CO2, 5% O2, and 90% N2 until Day 8 post-insemination. Blastocyst rates were evaluated at Day 7 and Day 8 post-insemination and were calculated based on the total number of presumptive zygotes. Blastocysts at 192 h post-insemination or activation were fixed and permeabilized for TUNEL assay (DeadEndTM Florimetric TUNEL System, Promega, Madison, WI) according to the manufacturer’s instructions. The effect of heat stress was compared within groups (IVF or PART) and the data were analysed by ANOVA. As expected, heat stress reduced the blastocyst rate of IVF embryos at Day 7 (24.3 ± 2.0% and 17.4 ± 2.2% for nonstressed and stressed IVF embryos; P < 0.05) and at Day 8 (32.4 ± 1.9% and 23.0 ± 2.1% for nonstressed and stressed IVF embryos; P < 0.01). However, the effect of heat stress on blastocyst rate of PART embryos was observed only at Day 8 post-insemination (30.0 ± 1.7% and 22.6 ± 2.0% for nonstressed and stressed PART embryos; P < 0.05), with no difference in blastocyst rate at Day 7 (21.6 ± 1.5% and 18.2 ± 1.8% for nonstressed and stressed PART embryos; P > 0.05). There was no difference in total cell numbers between nonstressed and stressed IVF or PART embryos. Apoptosis cell numbers and the apoptotic cell index were higher (P < 0.05) for stressed IVF (18.45 ± 1.24 and 0.16 ± 0.00) and PART (16.40 ± 5.20 and 0.17 ± 0.00) embryos than for nonstressed IVF (13.70 ± 0.75 and 0.13 ± 0.00) and PART (14.15 ± 0.86 and 0.13 ± 0.00) embryos. In conclusion, heat stress can induce apoptosis in both IVF and PART embryos, but its effect on pre-implantation development may occur at earlier stages in IVF embryos when compared with PART embryos. Financial support from Fapemig and CNPq.


2019 ◽  
Vol 102 (9) ◽  
pp. 8148-8158 ◽  
Author(s):  
Pamela I. Otto ◽  
Simone E.F. Guimarães ◽  
Lucas L. Verardo ◽  
Ana Luísa S. Azevedo ◽  
Jeremie Vandenplas ◽  
...  

1991 ◽  
Vol 52 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Khub Singh ◽  
N. K. Bhattacharyya

ABSTRACTResting heat production (H), respiratory rate (RR) and rectal temperature (Tr) were measured at different controlled temperatures (Tt) in Hariana (Bos indicus) and its F, crosses with Jersey (JH), Brown Swiss (BH) and Holstein Friesian (FH) (Bos taurus) breeds and the values obtained were used to assess their relative thermosensitivity.The lowest Tt at which H significantly decreased from that at 17°c was 32°c for Hariana, JH and BH and 27°c for FH after exposure for 8 days. The corresponding values after exposure for 18 days were 37°c for Hariana and 32°c for all the three crossbred groups. Differences between the genetic groups were also significant. The lowest Tt at which metabolizable energy (ME) decreased significantly in comparison with those at 17CC was 32°c in all the genetic groups. The differences in ME intake between genetic groups were significant only at 32°c Tt. The lowest Tt at which RR significantly increased from those at 17°c were 32°c in Hariana, 27°c in JH, BH and FH for both 5 to 7 and 15 to 17 days of exposure. The corresponding Tt for increase in Tr was 37°c in Hariana, 32°c in JH and 27°c in BH and FH at both 5 to 7 and 15 to 17 days of exposure.The ambient temperature at which H would have significantly decreased and RR and Tr increased from the respective values at 17CC Tt were calculated curvilinearly for different genetic groups. There were differences in these values of calculated ambient temperatures between genetic groups and between exposure durations in respect of H, RR, and Tr, indicating differences in thermosensitivity.


Gene ◽  
2014 ◽  
Vol 536 (2) ◽  
pp. 435-440 ◽  
Author(s):  
Rajib Deb ◽  
Basavaraj Sajjanar ◽  
Umesh Singh ◽  
Sushil Kumar ◽  
Rani Singh ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 422-423
Author(s):  
Briana Hawryluk ◽  
Morgan McKinney ◽  
Chloe Gingerich ◽  
Lindsey Bell ◽  
Patricia Ramos ◽  
...  

Abstract Reductions in basal metabolism and growth rate appear to contribute to decreased heat production of Bos indicus breeds. Lower metabolic rate may be due to smaller organ size and lower metabolic activity. Liver and heart account for high percentage of metabolic activity relative to their weight, and at a cellular level, mitochondria are responsible for producing energy for cellular maintenance. Our objective was to determine liver and heart weight and evaluate expression of key mitochondrial proteins in Bos indicus (80–100% Brahman) and Bos taurus (80–100% Angus) steers. Steers (n = 14 per breed) were harvested at the university meat laboratory. After evisceration, livers and hearts were weighed, and samples were frozen in liquid nitrogen for further analyses. Western blotting was used to determine expression of proteins in mitochondrial energy production: citrate synthase, a marker of mitochondria content; succinate dehydrogenase B (SDH-B), complex II; cytochrome c oxidase subunit IV, complex IV; and ATP synthase subunit 5A (ATP5A), complex V. Data were analyzed using an unpaired t-test in SAS-JMP. Although steers were similar age at slaughter (P = 0.84), Brahman steers weighed less (P &lt; 0.0001) and thus produced lighter carcasses (P &lt; 0.0001) and smaller livers and hearts (P &lt; 0.0001). On a relative basis (kg organ/kg BW), Brahman tended to possess smaller hearts (P = 0.06) and smaller livers (P = 0.03). Expression of mitochondria proteins in heart did not differ between breeds (P &gt; 0.3). However, Brahman exhibited lower expression of SDH-B (P = 0.005) but tended to have higher expression of ATP5A (P = 0.07) in liver. Altogether, this supports that smaller organ size is a contributing factor to lower heat production in heat-tolerant Brahman steers, and shifts in mitochondria protein expression in liver may impact energy metabolism at the cellular level.


Sign in / Sign up

Export Citation Format

Share Document